AQA Maths Pure Core 2

Mark Scheme Pack

2006-2015

PhysicsAndMathsTutor.com

Mathematics 6360

MPC2 Pure Core 2

Mark Scheme

2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

mark is for method						
mark is dependent on one or more M marks and is for method						
mark is dependent on M or m marks and is for accuracy						
mark is independent of M or m marks and is for method and accuracy						
mark is for explanation						
follow through from previous						
incorrect result	MC	mis-copy				
correct answer only	MR	mis-read				
correct solution only	RA	required accuracy				
anything which falls within	FW	further work				
anything which rounds to	ISW	ignore subsequent work				
any correct form	FIW	from incorrect work				
answer given	BOD	given benefit of doubt				
special case	WR	work replaced by candidate				
or equivalent	FB	formulae book				
2 or 1 (or 0) accuracy marks	NOS	not on scheme				
deduct <i>x</i> marks for each error	G	graph				
no method shown	c	candidate				
possibly implied	sf	significant figure(s)				
substantially correct approach	dp	decimal place(s)				
	mark is for method mark is dependent on one or more M mar mark is dependent on M or m marks and mark is independent of M or m marks and mark is for explanation follow through from previous incorrect result correct answer only correct solution only anything which falls within anything which falls within anything which rounds to any correct form answer given special case or equivalent 2 or 1 (or 0) accuracy marks deduct <i>x</i> marks for each error no method shown possibly implied substantially correct approach	mark is for methodmark is dependent on one or more M marks and is for mmark is dependent on M or m marks and is for accuracymark is independent of M or m marks and is for methodmark is for explanationfollow through from previousincorrect resultMCcorrect answer onlyMRcorrect solution onlyRAanything which falls withinFWanything which rounds toISWanycorrect formFIWanswer givenBODspecial caseWRor equivalentFB2 or 1 (or 0) accuracy marksNOSdeduct x marks for each errorGno method showncpossibly impliedsfsubstantially correct approachdp				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1	$y'(x) = 16 - x^{-2}$	M1		One term correct
	1	AI		Both correct
	$y'(x) = 16 - \frac{1}{x^2}$	B1		$x^{-2} = \frac{1}{2}$ OE PI
	$x^{1}(x) = 0 \longrightarrow 1(x^{2} - 1)$			<i>x</i> ⁻
	$y(x) = 0 \Longrightarrow 16x = 1;$	M1		c's $v'(x)=0$ and one relevant further step
	$\Rightarrow x = \pm \frac{1}{4}$			
	4	A1	5	Both answers required.
2 (a)	h-1	B1	5	ЪГ
2(a)	h = 1	DI		11
	Integral $=\frac{1}{2}\{\ldots\}$	M1		OE summing of areas of the four trapezia.
	$\{\ldots\} = f(0) + f(4) + 2[f(1) + f(2) + f(3)]$			[0.75+0.35+0.15+0.079]
	$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$			
	$= \begin{bmatrix} 1 + \frac{1}{17} + 2(\frac{1}{2} + \frac{1}{5} + \frac{1}{10}) \end{bmatrix}$	A1		Exact or to 3dp values Condone one
				numerical slip
	Integral = 1.329	A1	4	CSO . Must be 1.329
(b)	Increase the number of ordinates	EI	1	OE
	Totar		5	
3(a)	$\log 0.8^x = \log 0.05$ $x = \log_{0.8} 0.05$	M1		NMS:
	(M1)			SC B2 for 13.425 or better $(D1 \text{ for } 12.4 \text{ or } 12.42 \text{ i } 12.42)$
	$x \log_{10} 0.8 = \log_{10} 0.05 \text{ oe}$	A1		(B1 101 13.4 01 13.43, 13.42)
	r = 13.425 to 3 dp 13.425(A2)	Λ1		Condone greater accuracy
	(also A1 for 1 or 2dn)	AI	3	Condone greater accuracy
	(else Al loi 1 ol 2up)			
(b)(i)	a			a
	$\frac{\alpha}{1-r}$	M1		$S_{\infty} = \frac{\alpha}{1-r}$ used
				1 /
	$\frac{1}{1-r} = 5a \Rightarrow a = 5a(1-r)$	A1		Or better
	$\Rightarrow 1-5(1-r) \Rightarrow r-\frac{4}{2}=0.8$	A1	3	AG (be convinced)
	$ = \frac{1}{5} = \frac$			
(ii)	$n^{\rm th} {\rm term} = 20 \times (0.8)^{n-1}$	M1		Condone $20 \times (0.8)^n$.
	$u^{\text{th}} \text{ term} \leq 1 \implies 0 8^{n-1} \leq 1$			$0.8^{n-1} < 0.05$ or $0.8^{n-1} = k$, where $k = 0.05$
	$n \text{com} > 1 \rightarrow 0.0 \langle \frac{1}{20} \text{oc}$	A1		or k rounds up to 0.050
	Least <i>n</i> is 15	A1F	3	If not 15, ft on integer part of
			-	[answer (a)+2] provided $n>2$
				SC 3/3 for 15 if no error SC n^{th} term=16 ^{<i>n</i>-1} M14040
	Total		9	
		1		1

MPC2 (cont)

Q	Solution	Marks	Total	Comments
	[Note: Calc. set in wrong mode,			
	penalise only once on the paper.]			
	Condone missing units throughout the			
	question.			
4(a)	Area of triangle $=\frac{1}{2}(12)(8)\sin\theta$	M1		Use of $\frac{1}{2}ab\sin C$ or full equivalent
	$\sin\theta = \frac{20}{48} \ [=0.41(666)]$	A1		OE (giving 0.412 to 0.42)
	$\Rightarrow \theta = 0.4297(7) = 0.430$ to 3sf	A1	3	AG(need to see >3sf value)
(b)	$\{AB^2 = \}8^2 + 12^2 - 2 \times 8 \times 12 \times \cos\theta$	M1		
	= 64 + 144 - 174.5	m1		Accept 33 to 34 inclusive if three values not separate
	$\Rightarrow AB = 5.78 = 5.8 \text{ cm to } 2\text{sf}$	A1	3	If not 2sf condone 5.78 to 5.79 inclusive. Condone \pm
(c)(i)	Arc $AD = 8\theta$	M1:		
	= 3.44 = 3.4 cm to 2sf	A1	2	If not 2sf condone 3.438 to 3.44 inclusive
	1			
(ii)	Area of sector = $\frac{1}{2}r^2\theta$	M1		Stated or used [or 13.7(6) seen]
	Shaded area = Area of triangle – sector area	M1		Difference of areas
	Shaded area = $20 - 0.5 \times 8^2 \times \theta$			
	$= 6.2 \text{ cm}^2$ to 2sf	A1	3	Condone 6.24 to 6.2472
	Total		11	
5(a)	150 = 200 p + q	M1		Either equation
	120 = 150 p + q	A1		Both (condone embedded values for the M1A1)
		m1		Valid method to solve two simultaneous
	r = 0.6	A 1		eqns in p and q to find either p or q
	p = 0.0 a = 30	R1	5	AG (condone if left as a fraction)
	<i>y</i> 30	DI	5	
(b)	$u_4 = 102$	B1F√	1	Ft on $(72 + q)$
(c)	L = pL + q; $L = 0.6 L + 30$	M1		
	$L = -\frac{q}{q}$	1		
	1-p	mı		
	<i>L</i> = 75	A1F√	3	Ft on 2.5q
	Total		9	

6(a)(i)Stretch (I) in y-direction (II) Scale factor 2 (III)>1 transformation is M0. M1 A1(ii)Reflection; in x-axisM1 A12'Reflection'/ 'reflect(ed)' (or in y-axis or $y = 0$ or $x = 0$)(iii)Translation; $\begin{bmatrix} 30^{\circ} \\ 0 \end{bmatrix}$ B12'Translation'/'translate(d)'(iii)Translation; $\begin{bmatrix} 30^{\circ} \\ 0 \end{bmatrix}$ B12Accept full equivalent in words provid linked to 'translation/move/shift' and positive x-direction (Note: B0 B1 is possible)(b) $(\theta - 30^{\circ} =] \sin^{-1}(0.7) = 44.4^{\circ}$ $\dots = 180^{\circ} - 44.4^{\circ}$ $\theta = 74.4^{\circ}$, 165.6° M1 A1Inverse sine of 0.7 PI eg by sight of 4- 74 or better Valid method for 2^{nd} angle Condome >1dp accuracy(c) = $\cos^2 x + 2\cos x \sin x + \sin^2 x +$ $\cos^2 x - 2\cos x \sin x + \sin^2 x +$ $\cos^2 x - 2\cos x \sin x + \sin^2 x = 2(1)$ $= 2$ M1 A17(a) $2\log_a (5n - 24) = \log_a 4$ $\Rightarrow \log_a (2^{\circ} - 1-2a) = \log_a 4$ $\Rightarrow \log_a (2^{\circ} - 1-2a) = \log_a 4$ $\Rightarrow \log_a (2^{\circ} - 1-2a) = \log_a 4$ $\Rightarrow \log_a (2^{\circ} - 2a) = 10g_a 4$ $\Rightarrow n^2 - 20n + 96 = 0$ M1 A1	Q	Solution	Marks	Total	Comments
Scale factor 2 (III)MIA12MI for (I) and either (II) or (III) or (III)(ii)Reflection; in x-axisM1 A12'Reflection'/ 'reflect(ed)' (or in y-axis or $y = 0$ or $x = 0$)(iii)Translation; $\begin{bmatrix} 30^{\circ} \\ 0 \end{bmatrix}$ B1 B12'Translation'/ 'translate(d)'(iii)Translation; $\begin{bmatrix} 30^{\circ} \\ 0 \end{bmatrix}$ B1 B12Accept full equivalent in words provi linked to 'translation/move/shift' and positive x-direction (Note: B0 B1 is possible)(b) $\{\theta - 30^{\circ} = \} \sin^{-1}(0.7) = 44.4^{\circ}$ $\theta = 74.4^{\circ}$, 165.6° M1 A1Inverse sine of 0.7 PI eg by sight of 4- 74 or better Valid method for 2^{nd} angle Condone >1dp accuracy(c) = $\cos^2 x + 2\cos x \sin x + \sin^2 x +$ $\cos^2 x - 2\cos x \sin x + \sin^2 x$ $= 2(\cos^2 x + 2\sin^2 x) = 2(1)$ $= 2M1A1Award for either bracket expandedcorrectly(iii)2\log_a n - \log_a(5n - 24) = \log_a 4\Rightarrow \log_a n^2 - \log_a(5n - 24) = \log_a 4\Rightarrow \log_a \left[\frac{n^2}{5n - 24} = 4 \right]M1A1A law of logs used leading to 1sides being single log terms or single iterm on LHS with RHS=0$	6(a)(i)	Stretch (I) in y-direction (II)			>1 transformation is M0.
MIA12or (II)(ii)Reflection; in x-axisMI A12or (III)(iii)Translation;B1 $\begin{bmatrix} 30^{\circ}\\0 \end{bmatrix}$ B12'Reflection'/ 'reflect(ed)' (or in y-axis or $y = 0$ or $x = 0$)(iii)Translation;B1 $\begin{bmatrix} 30^{\circ}\\0 \end{bmatrix}$ B12Accept full equivalent in words provin linked to 'translation/move/shift' and positive x-direction (Note: B0 B1 is possible)(b) $\{\theta - 30^{\circ} = \} \sin^{-1}(0,7) = 44.4^{\circ}$ $\dots = 180^{\circ} - 44.4^{\circ}$ $\theta = 74.4^{\circ}$, 165.6°M1 A1Inverse sine of 0.7 PI eg by sight of 44 74 or better Valid method for 2nd angle Condone >1 dp accuracy(c) $\dots = \cos^2 x + 2\cos x \sin x + \sin^2 x + \cos^2 x - 2\cos x \sin x + \sin^2 x$ $= 2(\cos^2 x + 2\sin^2 x) = 2(1)$ $= 2$ M1 A1Award for either bracket expanded correctly7(a) $2\log_a(5n-24) = \log_a 4$ $\Rightarrow \log_a n^2 - \log_a(5n-24) = \log_a 4$ $\Rightarrow \frac{n^2}{5n-24} = 4$ M1 M1 M1A law of logs used A second law of logs used A second law of logs used leading to 1 sides being single log terms or single i term on LHS with RHS=0 $\Rightarrow n^2 - 20n + 96 = 0$ A13CSO. AG		Scale factor 2 (III)			M1 for (I) and either (II) or (III)
(ii) Reflection; in x-axis A_1 A_1 A_1 A_1 A_2 $Reflection'/ `reflect(ed)' (or in y-axis or y = 0 or x = 0)(iii) Translation;\begin{bmatrix} 30^{\circ}\\0\end{bmatrix} B_1 B_1 A_1 A_2 A_1 A_2 A_2 A_1 A_2 A_2 A_3 A_4 A$			M1A1	2	or (III)
(ii) Reflection; in x-axis Al (iii) Translation; $\begin{bmatrix} 30^{\circ}\\0 \end{bmatrix}$ Translation; $\begin{bmatrix} 30^{\circ}\\0 \end{bmatrix}$ B1 B1 C Accept full equivalent in words provident in words provide					
in x-axisAI2(or in y-axis or $y = 0$ or $x = 0$)(iii)Translation;BIYTranslation'/translate(d)' $\begin{bmatrix} 30^{\circ}\\0 \end{bmatrix}$ BI2Accept full equivalent in words provininked to 'translation/move/shift' and positive x-direction (Note: B0 B1 is possible)(b) $\{\theta - 30^{\circ} = \} \sin^{-1}(0.7) = 44.4^{\circ}$ MIInverse sine of 0.7 PI eg by sight of 4-74 or better $(\dots \dots $	(ii)	Reflection;	M1		'Reflection'/ 'reflect(ed)'
(iii) Translation; $\begin{bmatrix} 30^{\circ}\\0 \end{bmatrix}$ Translation; $\begin{bmatrix} 30^{\circ}\\0 \end{bmatrix}$ B1 B1 C Carrent full equivalent in words provious function of the equivalent in words provide function of the equivalent in the eq		in x-axis	A1	2	(or in y-axis or $y = 0$ or $x = 0$)
(iii) Translation; $\begin{bmatrix} 30^{-}\\0 \end{bmatrix}$ Translation; $\begin{bmatrix} 30^{-}\\0 \end{bmatrix}$ B1 B1 C Carcept full equivalent in words provining of the ex-direction (Note: B0 B1 is possible) (b) $\{\theta - 30^{\circ} =\} \sin^{-1}(0.7) = 44.4^{\circ}$ M1 $\frac{1}{2}$ M1 Context B0 B1 is possible) M1 Note: B0 B1 is possible) M1 Context B0 B1 is possible M1 Context B0 B1 Context B0 B1 Context B0 B1 Cont					
(iii) Translation, $\begin{bmatrix} 30^{\circ} \\ 0 \end{bmatrix}$ $\begin{bmatrix} 31^{\circ} \\ 0 \end{bmatrix}$ $\begin{bmatrix}$	(;;;)	Translation	D1		Translation? (translate(d)?
$\begin{bmatrix} 30 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 3$	(111)		DI		Translation / translate(u)
$\begin{bmatrix} 0 \end{bmatrix}$ $\begin{bmatrix} 0 $			B1	2	Accept full equivalent in words provided
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			DI	2	linked to 'translation/move/shift' and
(b) $\{\theta - 30^\circ =\} \sin^{-1}(0,7) = 44.4\circ$ $\dots = 180^\circ - 44.4^\circ$ $\theta = 74.4^\circ, 165.6^\circ$ (c) $\dots = \cos^2 x + 2\cos x \sin x + \sin^2 x + \cos^2 x - 2\cos x \sin x + \sin^2 x$ $\dots = 2\cos^2 x + 2\sin^2 x$ (c) $\dots = 2\cos^2 x + 2\sin^2 x$ $M1$ $M1$ $M1$ $M1$ $M2$ $M1$ $M1$ $M2$ $M2$ $M2$ $M3$ $M1$ $M3$ $M3$ $M3$ $M4$ $M4$ $M4$ $M4$ $M4$ $M4$ $M4$ $M4$					positive <i>x</i> -direction
(b) $\{\theta - 30^\circ =\} \sin^{-1}(0.7) = 44.4^\circ$ $\dots = 180^\circ - 44.4^\circ$ $\theta = 74.4^\circ, 165.6^\circ$ (c) $\dots = \cos^2 x + 2\cos x \sin x + \sin^2 x + \cos^2 x - 2\cos x \sin x + \sin^2 x$ $\dots = 2\cos^2 x + 2\sin^2 x$ $= 2(\cos^2 x + \sin^2 x) = 2(1)$ $= 2$ (c) $\dots = 2\cos^2 x + 2\sin^2 x$ $= 2(\cos^2 x + \sin^2 x) = 2(1)$ $= 2$ (c) $\sum_{n=0}^{\infty} -10g_n(5n-24) = \log_n 4$ $\Rightarrow \log_n n^2 - \log_n(5n-24) = \log_n 4$ $\Rightarrow \frac{n^2}{5n-24} = 4$ $\Rightarrow n^2 - 20n + 96 = 0$ (b) $M1$ M1 M2 M1 M1 M1 M1 M2 M2 M2 M2 M2 M1 M1 M2					(Note: B0 B1 is possible)
(b) $\{\theta - 30^{\circ} =\} \sin^{-1}(0.7) = 44.4^{\circ}$ $\dots = 180^{\circ} - 44.4^{\circ}$ $\theta = 74.4^{\circ}, 165.6^{\circ}$ (c) $\dots = \cos^{2} x + 2\cos x \sin x + \sin^{2} x + \cos^{2} x - 2\cos x \sin x + \sin^{2} x$ $\dots = 2\cos^{2} x + 2\sin^{2} x$ $\dots = 2\cos^{2} x + 2\sin^{2} x$ $\dots = 2(\cos^{2} x + \sin^{2} x) = 2(1)$ $\dots = 2(\cos^{2} x + \sin^{2} x) = 2(1)$ $\dots = 2(\cos^{2} x + \sin^{2} x) = 2(1)$ $\dots = 2(\cos^{2} x + \sin^{2} x) = 2(1)$ $\dots = 2(\cos^{2} x + \sin^{2} x) = 2(1)$ $\dots = 2(\cos^{2} x + \sin^{2} x) = 2(1)$ $\dots = 2(\cos^{2} x - 2\cos x) = 12(1)$ $\dots = 2(\cos^{2} x - 2\cos^{2} x - 2\cos^{2} x + 2\sin^{2} x) = 12(1)$ $\dots = 2(\cos^{2} x - 2\cos^{2} x + 2\sin^{2} x) = 12(1)$ $\dots = 2(\cos^{2} x - 2\cos^{2} x + 2\sin^{2} x) = 12(1)$ $\dots = 2(\cos^{2} x - 2\cos^{2} x + 2\sin^{2} x) = 12(1)$ $\dots = 2(\cos^{2} x - 2\cos^{2} x + 2\sin^{2} x) = 12(1)$ $\dots = 2(\cos^{2} x - 2\cos^{2} x + 2\sin^{2} x) = 12(1)$ $\dots = 2(\cos^{2} x - 2\cos^{2} x + 2\sin^{2} x) = 12(1)$ $\dots = 2(\cos^{2} x - 2\cos^{2} x + 2\sin^{2} x) = 12(1)$ $\dots = 2(\cos^{2} x - 2\cos^{2} x + 2\sin^{2} x) = 12(1)$ $\dots = 2(\cos^{2} x - 2\cos^{2} x + 2\sin^{2} x) = 12(1)$ $\dots = 2(\cos^{2} x - 2\cos^{2} x + 2\sin^{2} x) = 12(1)$ $\dots = 2(\cos^{2} x - 2\cos^{2} x + 2\sin^{2} x) = 12(1)$ $\dots = 2(\cos^{2} x - 2\cos^{2} x + 2\sin^{2} x) = 12(1)$ $\dots = 2(\cos^{2} x - 2\cos^{2} x + 2\sin^{2} x) = 12(1)$ $\dots = 2(\cos^{2} x - 2\cos^{2} x + 2\sin^{2} x) = 12(1)$ $\dots = 2(\cos^{2} x - 2\cos^{2} x + 2\sin^{2} x) =$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(b)	$\{\theta - 30^{\circ} =\} \sin^{-1}(0.7) = 44.4^{\circ}$	M1		Inverse sine of 0.7 PI eg by sight of 44,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					74 or better
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\dots = 180^{\circ} - 44.4^{\circ}$	ml		Valid method for 2 nd angle
(c) = $\cos^2 x + 2\cos x \sin x + \sin^2 x + \cos^2 x - 2\cos x \sin x + \sin^2 x$ M1Award for either bracket expanded correctly = $2\cos^2 x + 2\sin^2 x$ A1OE= $2(\cos^2 x + \sin^2 x) = 2(1)$ M1 $\cos^2 x + \sin^2 x = 1$ stated or used.= $2(\cos^2 x + \sin^2 x) = 2(1)$ M1 4 = $2(\cos^2 x + \sin^2 x) = 2(1)$ M1 4 = $2(\cos^2 x + \sin^2 x) = 2(1)$ M1 4 = $2(\cos^2 x + \sin^2 x) = 2(1)$ M1 4 = $2(\cos^2 x + \sin^2 x) = 2(1)$ M1 4 = $2(\cos^2 x + \sin^2 x) = 2(1)$ M1 4 = $2(\cos^2 x + \sin^2 x) = 2(1)$ M1 4 = $2(\cos^2 x + \sin^2 x) = 2(1)$ M1 4 = $2(\cos^2 x + \sin^2 x) = 2(1)$ M1 4 = $2(\cos^2 x + \sin^2 x) = 2(1)$ M1 4 = $2(\cos^2 x + \sin^2 x) = 2(1)$ 4 M1= $2(\cos^2 x + \sin^2 x) = 2(1)$ 4 M1= $2(\cos^2 x + \sin^2 x) = 2(1)$ 4 M1= $2(\cos^2 x + \sin^2 x) = 2(1)$ 5 6 = $2(\cos^2 x + \sin^2 x) = 2(1)$ 4 4 = $2(\cos^2 x + \sin^2 x) = 2(1)$ 13 = $2(\cos^2 x + \sin^2 x) = 2(1)$ 13 = $2(\cos^2 x + \sin^2 x) = 2(1)$ 13 = $2(\cos^2 x + \sin^2 x) = 2(1)$ 13 = $2(\cos^2 x + \sin^2 x) = 2(1)$ 13 = $2(\cos^2 x + \sin^2 x) = 2(1)$ 13 = $2(\cos^2 x + \sin^2 x) = 2(1)$ 13 = $2(\cos^2 x + \sin^2 x) = 2(1)$ 13 = $2(\cos^2 x + \sin^2 x) = 2(1)$ 13 = $2(\cos^2 x + \sin^2 x) = 2(1)$ 13 = $2(\cos^2 x + \sin^2 x) = 2(1)$ 13 = $2(\cos^2 x + \sin^2 x) = 2(1)$ 13 <th></th> <th>$\theta = 74.4^{\circ}, \ 165.6^{\circ}$</th> <th>Al</th> <th>3</th> <th>Condone >1dp accuracy</th>		$\theta = 74.4^{\circ}, \ 165.6^{\circ}$	Al	3	Condone >1dp accuracy
(c) $ \begin{array}{c} \dots = \cos^{2} x + 2\cos x \sin x + \sin^{2} x \\ \cos^{2} x - 2\cos x \sin x + \sin^{2} x \\ \dots = 2\cos^{2} x + 2\sin^{2} x \\ = 2(\cos^{2} x + \sin^{2} x) = 2 (1) \\ = 2 \\ \end{array} \begin{array}{c} M1 \\ M1 \\ = 2 \\ \end{array} \begin{array}{c} \text{OE} \\ \cos^{2} x + \sin^{2} x = 1 \text{ stated or used.} \\ \text{AG (be convinced)} \\ \hline \\ \text{III} \\ \hline \\ \text{III} \\ \end{array} \begin{array}{c} \text{OE} \\ \cos^{2} x + \sin^{2} x = 1 \text{ stated or used.} \\ \text{AG (be convinced)} \\ \hline \\ \text{IIII} \\ \hline \\ \text{IIIII} \\ \hline \\ \text{IIIII} \\ \hline \\ \text{IIIII} \\ \hline \\ \text{IIIIIII} \\ \hline \\ \text{IIIIII} \\ \hline \\ \text{IIIIIIIII} \\ \hline \\ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$		2			
$\frac{\cos^2 x - 2\cos x \sin x + \sin^2 x}{\cos^2 x + 2\sin^2 x} = \frac{1}{4}$ $\frac{\sin^2 x}{\sin^2 x + 2\sin^2 x} = 2 (1)$ $\frac{\sin^2 x}{\sin^2 x + 2\sin^2 x} = 2 (1)$ $\frac{\sin^2 x}{\sin^2 x} = 1 \text{ stated or used.}$ $\sin^2 $	(0)	$\dots = \cos^2 x + 2\cos x \sin x + \sin^2 x +$	M1		Award for either bracket expanded
$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$		$\cos^2 x - 2\cos x \sin x + \sin^2 x$	1011		correctly
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$= 2(\cos^{2} x + \sin^{2} x) = 2(1)$ $= 2$ $A1$ $A1$ A $AG (be convinced)$ $= 2$ $Total$ $A1$ A $AG (be convinced)$ $AG (be convinced)$ $= 2$ $2 \log_{a} n - \log_{a} (5n - 24) = \log_{a} 4$ $\Rightarrow \log_{a} n^{2} - \log_{a} (5n - 24) = \log_{a} 4$ $\Rightarrow \log_{a} \left[\frac{n^{2}}{5n - 24} \right] = \log_{a} 4$ $A1$ $A law of logs used leading to l sides being single log terms or single term on LHS with RHS=0$ $\Rightarrow \frac{n^{2}}{5n - 24} = 4$ $\Rightarrow n^{2} - 20n + 96 = 0$ $A1$ $A1$ A $CSO. AG$		$\dots = 2\cos^2 x + 2\sin^2 x$	Al		OE
Image: Second law of logs usedImage: Alternative Alt		$= 2(\cos^2 x + \sin^2 x) = 2(1)$	MI		$\cos^2 x + \sin^2 x = 1$ stated or used.
7(a) $2\log_a n - \log_a (5n - 24) = \log_a 4$ M1A law of logs used $\Rightarrow \log_a n^2 - \log_a (5n - 24) = \log_a 4$ M1A law of logs used leading to I $\Rightarrow \log_a \left[\frac{n^2}{5n - 24} \right] = \log_a 4$ M1A second law of logs used leading to I $\Rightarrow \frac{n^2}{5n - 24} = 4$ M1Image: Side second law of logs used leading to I $\Rightarrow n^2 - 20n + 96 = 0$ A13CSO. AG		= 2	Al	4	AG (be convinced)
$\begin{array}{ c c c c c } \hline n(a) & 2\log_a n - \log_a (5n - 24) = \log_a 4 \\ \Rightarrow & \log_a \left[\frac{n^2}{5n - 24} \right] = \log_a 4 \\ \Rightarrow & \frac{n^2}{5n - 24} = 4 \\ \Rightarrow & n^2 - 20n + 96 = 0 \\ \hline n(a) & 2\log_a (5n - 24) = \log_a 4 \\ \hline M1 & M1 \\ \hline M2 & M1 \\ \hline M1 & M1 \\ \hline $	7(a)			13	
$\Rightarrow \log_a n^2 - \log_a (5n - 24) = \log_a 4$ $\Rightarrow \log_a \left[\frac{n^2}{5n - 24} \right] = \log_a 4$ $\Rightarrow \frac{n^2}{5n - 24} = 4$ $\Rightarrow n^2 - 20n + 96 = 0$ A1 A law of logs used A second law of logs used leading to b sides being single log terms or single b term on LHS with RHS=0 CSO. AG	/(a)	$2\log_a n - \log_a (3n - 24) = \log_a 4$	N/1		
$\Rightarrow \log_{a} \left[\frac{n^{2}}{5n - 24} \right] = \log_{a} 4$ $\Rightarrow \frac{n^{2}}{5n - 24} = 4$ $\Rightarrow n^{2} - 20n + 96 = 0$ A1 A second law of logs used leading to 1 sides being single log terms or single term on LHS with RHS=0 CSO. AG		$\Rightarrow \log_a n^2 - \log_a (5n - 24) = \log_a 4$	IMI I		A law of logs used
$\Rightarrow \log_{a} \left[\frac{5n - 24}{5n - 24} \right]^{= \log_{a} 4}$ $\Rightarrow \frac{n^{2}}{5n - 24} = 4$ $\Rightarrow n^{2} - 20n + 96 = 0$ A1		$\rightarrow \log \left[n^2 \right] \log 4$			A second law of logs used leading to both
$\Rightarrow \frac{n^2}{5n-24} = 4$ $\Rightarrow n^2 - 20n + 96 = 0$ A1 A1 CSO. AG		$\rightarrow \log_a \left \frac{5n-24}{5n-24} \right = \log_a 4$	MI		sides being single log terms or single log
$\Rightarrow \frac{n^2}{5n-24} = 4$ $\Rightarrow n^2 - 20n + 96 = 0$ A1 3 CSO. AG		2			term on LHS with RHS=0
$\Rightarrow n^2 - 20n + 96 = 0$ A1 A1 CSO. AG		$\Rightarrow \frac{n^2}{2} = 4$			
$\Rightarrow n^2 - 20n + 96 = 0 \qquad A1 \qquad 3 \qquad CSO. AG$		5n - 24			
$\Rightarrow n^2 - 20n + 96 = 0$ A1 3 CSO. AG		2000000000000000000000000000000000000		~	
		$\Rightarrow n - 20n + 96 = 0$	Al	3	CSO. AG
(b) $\rightarrow (n-2)(n-12) = 0$ M1 Accent alternatives as formula	ക	$\rightarrow (n, 8)(n, 12) = 0$	M1		Accent alternatives as formula
$(0) \rightarrow (n-6)(n-12) = 0$ [WII] Accept anematives eg formula, completing of sa	(0)	$\rightarrow (n-6)(n-12) = 0$	1111		completing of sa
$\Rightarrow n = 8$ 12 A1 2 completing of sq.		$\Rightarrow n = 8$ 12	A1	2	compround or sq
Total 5		Total		5	

MPC2 (cont)

MPC2 (cont)

Q	Solution	Marks	Total	Comments
8(a)	$\frac{dy}{dt} = \frac{3}{2}r^{\frac{1}{2}} - 3$	M1	2	One term correct
	$dx = 2^{x} = 3$	AI	2	Both correct
	du			
(b)(i)	When $x = 0$, $\frac{dy}{dx} = -3$	B1F√		Ft provided answer < 0 .
	Eqn of tangent at O is $y = -3x$	B1F√	2	OE Ft on $v'(0)$
(ii)	At (9,0) $\frac{dy}{dt} = \frac{3}{2}(9)^{\frac{1}{2}} - 3$	M1		Attempt to find $y'(9)$
(11)	$\frac{dx}{dx} = \frac{2}{2}$	ml		OF
	Eqn tangent at A is $y-0=y(9)[x-9]$	1111		0E
	$\Rightarrow y = \frac{3}{2}(x-9) \Rightarrow 2y = 3x-27$	A1	3	CSO. AG
	2			
(iii)	Eliminating $y \Rightarrow -6x = 3x - 27$	M1		OE method to one variable
	$9r - 27 \rightarrow r = 3$	A1F		(eg $2y = -y - 27$) [A1F for each coordinate: only ft on
	$j_{\lambda} = 2i \rightarrow \lambda$			y = kx tangent in (b)(i) for $k < 0$]
	When $x = 3$, $y = -9$. { $P(3, -9)$ }	A1F	3	
	$\left(\frac{3}{2} \right) = 2 \frac{5}{2} 3x^2$			
(c)	$\int \left(x^2 - 3x \right) dx = \frac{1}{5}x^2 - \frac{3x}{2} (+c)$	M1	3	One power correct
		A2,1,0	3	and unsimplified forms
				1
(d)	$\int_{1}^{9} \left(x^{\frac{3}{2}} - 3x \right) dx =$	B 1		PI
(u)	$\int_{0}^{1} \left(\frac{1}{2} - \frac{1}{2} \right) dx$	DI		
	$=\frac{2}{3}\times9^{\frac{5}{2}}-\frac{3}{3}\times9^{2}-0$	M1		Correct use of limits following integration
	5 2	1911		Correct use of minits following integration
	24.3			
	Area of triangle $OPA = \frac{1}{2} \times 9 \times y_P $	M1		
	1			
	$\int \text{Sh.Area} = \frac{1}{2} \times 9 \times y_P - \int_0^1 \left(x^2 - 3x \right) dx$	M1		OE
	=40.5 - 24.3 = 16.2	A1	5	
	Total		18 75	
	IUIAL		/5	

Mathematics 6360

MPC2 Pure Core 2

Mark Scheme

2006 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

mark is for method						
mark is dependent on one or more M marks and is for method						
mark is dependent on M or m marks and is for accuracy						
mark is independent of M or m marks and is for method and accuracy						
mark is for explanation						
follow through from previous						
incorrect result	MC	mis-copy				
correct answer only	MR	mis-read				
correct solution only	RA	required accuracy				
anything which falls within	FW	further work				
anything which rounds to	ISW	ignore subsequent work				
any correct form	FIW	from incorrect work				
answer given	BOD	given benefit of doubt				
special case	WR	work replaced by candidate				
or equivalent	FB	formulae book				
2 or 1 (or 0) accuracy marks	NOS	not on scheme				
deduct <i>x</i> marks for each error	G	graph				
no method shown	c	candidate				
possibly implied	sf	significant figure(s)				
substantially correct approach	dp	decimal place(s)				
	mark is for method mark is dependent on one or more M mar mark is dependent on M or m marks and mark is independent of M or m marks and mark is for explanation follow through from previous incorrect result correct answer only correct solution only anything which falls within anything which falls within anything which rounds to any correct form answer given special case or equivalent 2 or 1 (or 0) accuracy marks deduct <i>x</i> marks for each error no method shown possibly implied substantially correct approach	mark is for methodmark is dependent on one or more M marks and is for mmark is dependent on M or m marks and is for accuracymark is independent of M or m marks and is for methodmark is for explanationfollow through from previousincorrect resultMCcorrect answer onlyMRcorrect solution onlyRAanything which falls withinFWanything which rounds toISWanycorrect formFIWanswer givenBODspecial caseWRor equivalentFB2 or 1 (or 0) accuracy marksNOSdeduct x marks for each errorGno method showncpossibly impliedsfsubstantially correct approachdp				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC2		1	-	
Question	Solution	Marks	Total	Comments
1(a)	Area of sector = $\frac{1}{2}r^2\theta = \frac{1}{2} \times 5^2 \times \theta$ 12.5 $\theta = 8.1 \Rightarrow \theta = 0.648$	M1 A1	2	$\frac{1}{2}r^2\theta$ seen or used AG Condone $\theta = 0.648$ used to show that
(b)	Arc = 5θ ;	M1		area = 8.1 5 θ
	\therefore = 3.24 cm \Rightarrow Perimeter = 10 + arc = 13.24 cm	Al A1√	3	PI by a correct perimeter CSO Condone missing/wrong units; condone 3sf i.e. 13.2 if no obvious error NMS 3/3
	Total		5	
2(a)	$\frac{\sin B}{4.8} = \frac{\sin 100}{12}$	M1		Use of the sine rule
	$\sin B = \frac{4.8 \sin 100}{12} \ [= 0.39(392)]$	m1		Rearrangement
	(angle ABC) = 23.19(8) {= 23.2°.}	A1	3	AG Need >1dp eg 23.19 or 23.20
(b)	Angle $C = 80^{\circ} - 23.2^{\circ} = 56.8^{\circ}$	M1		Valid method to find a relevant angle eg C (PI eg by correct sin C) or $23.2^{\circ}+10^{\circ}$
	Area of triangle = $0.5 \times 12 \times 4.8 \times \sin C$	M1		OE eg 0.5×4.8×12×cos (<i>B</i> +10)
	$\dots = 24.09.\dots = 24.1 \text{ cm}^2$. (to 3sf)	A1	3	Condone missing/wrong units
	Total		6	
3(a)	(1 enth term) = a + (10 - 1) d	MI		
	$\dots = 1 + 9(6) = 55$	A1	2	NMS or rep. addn. B2 CAO
				SC if M0 award B1 for 6 <i>n</i> -5 OE
(b)(i)	$S_n = \frac{n}{2} [2 + (n-1)6]$	M1		Formula for $\{S_n\}$ with either $a = 1$ or $d = 6$ substituted
	$\frac{n}{2} [2 + 6n - 6] = 7400$	A1		Eqn formed with some expansion of brackets
	$3n^2 - 2n = 7400 \Longrightarrow 3n^2 - 2n - 7400 = 0$	A1	3	CSO AG
(ii)	(3n+148)(n-50) = 0	M1		Formula/factorisation OE
	$\Rightarrow n = 50$	A1	2	NMS single ans. 50 B2 CAO NMS 50 and -49.3(3) B1 CAO
	Total		7	

Question	Solution	Marks	Total	Comments
4(a)	$(1-2x)^4 = (1)^4 + 4(1)^3(-2x) + (1)^2(-2x)^3 + (-2x)^4 + (1)^2(-2x)^3 + (-2x)^4 + ($	M1		Any valid method as far as term(s) in x and term(s) in x^2 .
	0(1)(-2x) + [4(1)(-2x) + (-2x)]			
	$= [1] - 8x + 24x^2 + [-32x^3 + 16x^4]$	A1		p = -8 Accept $-8x$ even within a series.
		A1	3	$q = 24$ Accept $24x^2$ even within a series.
(b)	x term is $\binom{9}{1} 2^8 x$	M1		OE
	Coefficient of x term is = $9 \times 2^8 = 2304 (=k)$	A1	2	Condone 2304 <i>x</i>
(c)	$(1-2x)^4 (2+x)^9 = (1+px+)(2^9+kx)$	M1		Uses (a) and (b) oe (PI)
	= =+ $kx + px(2^9) +$	M1		Multiply the two expansions to get x terms
	Coefficient of x is $k + 512p$			
	= 2304 - 4096 = -1792	A1ft	3	ft on candidate's values of k and p . Condone $-1792x$
				SC If $0/3$ award B1ft for $p+k$ evaluated
	Total		8	
5(a)	$\log_a x = \log_a 6^2 - \log_a 3$	M1		One law of logs used correctly
	$\log_a x = \log_a \left(\frac{6^2}{3}\right)$	M1		A second law of logs used correctly
	$\log_a x = \log_a \frac{36}{3} \Longrightarrow x = 12$	A1	3	CSO AG
(b)	$\log_a y + \log_a 5 = 7 \Longrightarrow \log_a 5y = 7$	M1		
	$\Rightarrow 5y = a^7 \text{ or } y = \frac{1}{5}a^7 \text{ or } a = (5y)^{1/7}$	m1 A1	3	Eliminates logs Accept these forms
	Total		6	

MPC2 (cont				
Question	Solution	Marks	Total	Comments
6(a)(i)	y-coordinate of A is $27-3^{\circ}$; = 26	M1A1	2	
(ii)	When $x = 3$, $y = 27 - 3^3 = 0 \implies B(3,0)$	B1	1	AG; be convinced
(b)	h = 1	B1		PI
	Area $\approx h/2\{\}$ $\{\}= f(0)+f(3)+2[f(1)+f(2)]$ $\{\}= "26" + 0 + 2(24 + 18)$	M1 A1√	4	OE summing of areas of the 'trapezia' on (a)(i) (Σ trap="25"+21+9)
	(Alea ~) 55	AIV	4	$011[42 + 0.5^{(1)}]$
(c)(i)	$\log_{10} 3^x = \log_{10} 13$	M1		Takes ln or \log_{10} on both or $x = \log_2 13$
	$x \log_{10} 3 = \log_{10} 13$	m1		Use of $\log_3 x = x \log_3$ or
				$\log_3 13 = \frac{\lg 13}{\lg 3}$ OE (PI by $\log_3 13 = 2.335$
				or better)
	$x = \frac{\lg 13}{\lg 3} = 2.334717\dots$ = 2.3347 to 4dp	A1	3	Must show that logarithms have been used
(ii)	$\{k=\}$ 14	B1	1	Condone $y = 14$; Accept final answer 14 with only zeros after decimal point eg 14.000
(d)(i)	Translation;	B1;		'Translation'/'translate(d)' B0 if more than one transformation
	$\begin{bmatrix} 0\\ -27 \end{bmatrix}$	B1	2	Accept full equivalent in words provided linked to 'translation/move/shift' and negative y-direction (Note: B0 B1 is possible)
(ii)		B1		Correct shape (translation of given curve vertically downwards)
		B1	2	Only point of intersection with coord axes is on negative <i>y</i> -axis and curve is asymptotic to the negative <i>x</i> -axis
	Total		<u> </u>	
	Total		15	

5

MPC2 (cont		34 1		a
Question	Solution	Marks	Total	Comments
7(a)(i)	When $x = 4$, $\frac{dy}{dx} = 3(2) + \frac{16}{16} - 7 = 0$	B1	1	AG Be convinced
(ii)	$\frac{16}{x^2} = 16x^{-2}$	B1	1	Accept $k = -2$
(iii)	$\frac{d^2 y}{dx^2} = 3 \times \frac{1}{2} x^{-\frac{1}{2}} + 16 \times (-2) x^{-3} - 0$	M1		A power decreased by 1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{3}{2} x^{-\frac{1}{2}}; -32x^{-3}$	A1; A1√	3	candidate's negative integer k [-1 for >2 term(s)]
(iv)	When $x = 4$, $\frac{d^2 y}{dx^2} = \frac{3}{4} - \frac{32}{64} = \frac{1}{4}$	M1		Attempt to find $y''(4)$ reaching as far as two simplified terms
	Minimum since $y''(4) > 0$	E1√	2	candidate's sign of $y''(4)$
	[Alternative: Finds the sign of $y'(x)$ either s statement: (M1) Correct ft conclusion with y'(4)=0]	 side of the valid rease	e point wł on E1√]	here x=4, need evidence rather than just a [In both, condone absent statement
(b)(i)	At $P(1,8)$, $\frac{dy}{dx} = 3(1)^{\frac{1}{2}} + \frac{16}{1^2} - 7 = 12$	B1	1	AG Be convinced
(ii)	Gradient of normal = $-\frac{1}{12}$	M1		Use of or stating $m \times m' = -1$
	Equation of normal is $y - 8 = m[x - 1]$	M1		Can be awarded even if m=12
	$y-8 = -\frac{1}{12}(x-1) \Longrightarrow 12y-96 = -x+1$ $\Longrightarrow 12y+x=97$	A1	3	Any correct form of the equation
(c)(i)	$\int 3x^{\frac{1}{2}} + \frac{16}{x^2} - 7 \mathrm{d}x =$			
	$\dots = 3\frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 16\frac{x^{-1}}{-1} - 7x + c$	M1 A2,1,0	3	One power correct. A1 if 2 of 3 terms correct candidate's negative integer k Condone absence of " $+ c$ "
(ii)	$y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c \qquad (*)$	B1√		y = candidate's answer to (c)(i) with tidied coefficients and with '+c'. (' $y =$ ' PI by next line)
	When $x = 1, y = 8 \implies 8 = 2 - 16 - 7 + c$	M1		Substitute. (1,8) in attempt to find constant of integration
	$y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + 29$	A1	3	Accept $c = 29$ after (*), including $y =$, stated
	Total		17	

6

viPC2 (cont		36.3		a
Question	Solution	Marks	Total	Comments
8(a)	Stretch (I) in x-direction (II) scale	M1	2	Need(I) and one of (II),(III)
	factor 2 (III)	Al	2	M0 if more than one transformation
(b)	$\tan^{-1} 3 = 1.2(49) (=\alpha)$	M1		$\tan^{-1} 3$ [PI by 71.(56)°]
	$\{\frac{1}{2}x=\} \pi+\alpha;$	m1		Correct quadrant; condone degrees or mix
	$\frac{1}{2}x = 1.249; 4.3906$			
	x = 2.498 = 2.50 to 3 sf	A1		Condone 2.5 otherwise deduct <u>max</u> of 1
				mark throughout Q8 from A marks if
	x = 8./81 = 8./8 to 3 st	AI	4	'correct' rads. but to 2sf or final answers in degrees. (143°, 503°)
				As usual, accept greater accuracy
				answers. Ignore extra values outside the
				given interval (0 to 12.6). If > 2 values
				one
				NB M1m0A1A0 is possible
	SC after M0 for error $\tan x = 6$;	<u>.</u>		'
	Either $x = 1.40(5), 4.54(7), 7.68(8), 10.8(3)$) or $x = 8$	0.5°, 260.	.5 °, 440.5°, 620.5° SC B1
		1		(accept each rounded or truncated to 3 sf)
(c)	$\cos\theta = 0$ $\sin\theta - 3\cos\theta = 0$	M1		Need both
(0)				
	$\tan \theta = \sin \theta$ or $\tan \theta = 2$			$\tan \theta = \sin \theta$
	$\tan \theta = \frac{1}{\cos \theta}$ or $\tan \theta = 3$	M1		$\tan \theta = \frac{1}{\cos \theta}$ seen/used
	$\cos\theta = 0 \implies \theta = \frac{\pi}{2} = 1.57(07)$	D1		Accept $\frac{\pi}{2}$
	2	BI		2
	or $\theta = \frac{3\pi}{4.71(23)}$	D1		Accept $\frac{3\pi}{2}$
	2	DI		2
	$\tan \theta = 3 \Longrightarrow$ $\theta = 1.240 \div 4.3006 = -1.25 = 4.30 \text{ to } 2\text{ sf}$	A1.A		If not correct ft on (b)
	b = 1.247, 4.3700 = 1.23, 4.37 10 381			NB_M0M1(B0B0)A1ft is possible
			5	
				90°; 270°;
				71.5(6)°; 251.5(6)°
	Total		11	
	TOTAL		75	

Mathematics 6360

MPC2 Pure Core 2

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and	d is for method	and accuracy			
Е	mark is for explanation					
or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	{Area of sector =} $\frac{1}{2}r^2\theta$	M1		
	$= 0.5 \times 36 \times 1.2 = 21.6 \text{ cm}^2$	A1	2	Condone missing/wrong units throughout
(b)	$\operatorname{Arc} = r\theta$	M1		the paper
	$= 6 \times 1.2 = 7.2$	A1		
	Perimeter = $12 + 7.2 = 19.2$ cm	A1ft	3	Ft on incorrect evaluation of 6×1.2
	Total		5	
2	h = 1	B1		PI
	$\mathbf{f}(x) = \sqrt{2^x}$			
	Area $\approx h/2\{$			OE summing of areas of the 'trapezia'
	$\{\dots\} = f(0)+f(3)+2[f(1)+f(2)]$	M1		
	$\{\ldots\} = 1 + \sqrt{8} + 2(\sqrt{2} + 2)$	A1		OE
	(Area \approx) 5.3284 = 5.328 (to 3dp)	A1	4	CAO Must be 5.328
	Total		4	
3(a)(i)	${p = }2$	B1		Condone '64=8 ² '
(ii)	$\{q=\}-2$	B1ft		Ft on ' $-p$ ' if q not correct
(iii)	$\{r=\} 0.5$	B1	3	Condone ' $\sqrt{8} = 8^{0.5}$ '
	8^x e^{-2} $e^{x-0.5}$ e^{-2} OF			
(b)	$\frac{1}{8^{0.5}} = 8^{-1} \Longrightarrow 8^{-1} \cdots = 8^{-1} \text{ OE}$	MI		Using parts (a) $\underline{\&}$ valid index law to stage $8^{c}=8^{d}$ (PI)
	$\Rightarrow x - 0.5 = -2 \Rightarrow x = -1.5$	A1ft	2	Ft on c's $(q + r)$ if not correct (Accept correct answer without working)
	ALT: $\log 8^x = \log k$, $x \log 8 = \log k$; $x = -1.5$			(M1 A1)
	Total		5	
4(a)	$6^2 = 4^2 + 5^2 - 2(4)(5)\cos\theta$	M1		Use of the cosine rule
	$\cos\theta = \frac{4^2 + 5^2 - 6^2}{2(4)(5)}$	ml		Rearrangement
	-()())			
	$\cos\theta = \frac{5}{40} = \frac{1}{8}$	A1	3	CSO AG (be convinced)
(b)	$\cos^2\theta + \sin^2\theta = 1$	M1		Stated or used (PI)
	$\sin^2 \theta = \frac{63}{64}$	A1		Or better
	$\sqrt{63}$ $\sqrt{9\times7}$ $\sqrt{3}\sqrt{7}$			
	$\sin\theta = \frac{1}{8} = \frac{1}{8} = \frac{1}{8} = \frac{1}{8}$	AI	3	AG (be convinced)
(c)	Area of triangle = $0.5 \times 4 \times 5 \times \sin \theta$.	M1		
	$\dots = \frac{30\sqrt{7}}{8} \text{ cm}^2.$	A1	2	OE (Condone 9.92)
	Total		8	

Q	Solution	Marks	Total	Comments
5(a)	$ar = 48; ar^3 = 3$	B1		For either. OE
	$\Rightarrow 16r^2 = 1$	M1		Elimination of <i>a</i> OE
	$r^2 = \frac{1}{16} \implies r = -\frac{1}{4}$	A1		CSO AG Full valid completion. SC Clear explicit verification (max B2 out of 3.)
	or $r = \frac{1}{4}$	B1	4	
(b)(i)	<i>a</i> = - 192	B1	1	
(ii)	$\frac{a}{1-r} = \frac{a}{1-\left(-\frac{1}{4}\right)}$	M1		$\frac{a}{1-r}$ used
	$S_{\infty} = \frac{-768}{5} \ (= -153.6 \)$	Alft	2	Ft on candidate's value for <i>a</i> . i.e. $\frac{4}{5}a$
				SC candidate uses $r = 0.25$, gives $a = 192$ and
				sum to infinity = 256. (max. B0 M1A1)
	Total		7	

Q	Solution	Marks	Total	Comments
6(a)(i)	$y = x + 1 + 4x^{-2} \implies \frac{\mathrm{d}y}{\mathrm{d}x} = 1 - 8x^{-3}$	M1 A2,1,0	3	Power $p \rightarrow p-1$ (A1 if $1 + ax^n$ with $a = -8$ or $n = -3$)
(ii)	$1 - 8x^{-3} = 0$	M1		Puts c's $\frac{dy}{dx} = 0$
	$x^{3} = 8$	m1		Using $x^{-k} = \frac{1}{x^k}$ to reach $x^a = b$, $a > 0$ or
	x = 2 When $x = 2$, $y = 4$	A1 A1ft	4	correct use of logs.
(iii)	At (1, 6), $\frac{dy}{dx} = 1 - 8 = -7$	M1		Attempt to find $y'(1)$
	Gradient of normal = $\frac{1}{7}$	M1		Use of or stating $m \times m' = -1$
	Equation of normal is $y - 6 = m[x - 1]$	M 1		<i>m</i> numerical
	$y-6 = \frac{1}{7}(x-1)$ $\{\frac{y-6}{x-1} = \frac{1}{7}; \ 7y = x+41\}$	A1ft	4	OE ft on c's answer for (a)(i) provided at least A1 given in (a)(i) and previous 3M marks awarded
(b)(i)	$\int x \left(+1 + \frac{4}{x^2} \right) dx =$ = $\frac{x^2}{2} + x - 4x^{-1} \{+c\}$	M1 A2,1,0	3	One of three terms correct. For A2 need all <u>three</u> terms as printed or
(ii)	$Area= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x + 1 + \frac{4}{-1} dx =$			(A1 if 2 of 3 terms correct)
	$\left[\frac{x^2}{2} + x - \frac{4}{x}\right]_1^4 = (8+4-1) - \left(\frac{1}{2}+1-4\right)$	M1		Dealing correctly with limits; F(4)–F(1) (must have integrated)
	= 13.5 Total	A1	2 16	

MPC2

Q	Solution	Marks	Total	Comments
7(a)	$ (1+2x)^{8} = 1 + {\binom{8}{1}} (2x)^{1} + {\binom{8}{2}} (2x)^{2} + {\binom{8}{3}} (2x)^{3} + $	M1		Any valid method. PI by correct value for <i>a</i> , <i>b</i> or <i>c</i>
	$= 1 + 16x + 112x^2 + 448x^3 + \dots$	A1A1		A1 for each of a, b, c
	$\{a = 16, b = 112, c = 448\}$	A1	4	
(b)	x^3 terms <u>from expn.</u> of $\left(1 + \frac{1}{2}x\right)\left(1 + 2x\right)^8$			
	are cx^3 and $\frac{1}{2}x(bx^2)$	M1		Either
	$cx^3 + \frac{1}{2}x(bx^2)$	A1		<i>b</i> , <i>c</i> or candidate's values for <i>b</i> and <i>c</i> from (a)
	Coefficient of x^3 is $c + 0.5 b = 504$	A1ft	3	Ft on candidate's $(c + 0.5b)$ provided b and c are positive integers >1
	Total		7	

Q	Solution	Marks	Total	Comments
8 (a)	$\{x =\} \cos^{-1}(0.3) = 1.266 \{= \beta\}$	M1		$\cos^{-1}(0.3)$ PI by eg 72° or 73°
	$\{x=\}$ $2\pi -\beta$	ml		Condone degrees or mix.
	x = 1.27, 5.02	A1	3	Accept 1.26 to 1.27 with 5.01 to 5.02 inclusive
(b)(i)	$M(\pi, -1)$	B1;B1	2	B1 for each coordinate
(ii)	$\{x_{\varrho} =\} 2\pi - \alpha$	B1	1	OE (unsimplified)
(c)	Stretch (I) in x-direction (II) scale	M1		Need(I) & one of (II).(III)
(-)	factor ¹	A 1	2	
	factor $\frac{1}{2}$ (III)	AI	2	
(d)	$\cos 2x = \cos \frac{4\pi}{5} \implies 2x = \frac{4\pi}{5}$	B1		OE. (From correct work)
	$\Rightarrow x = \frac{2\pi}{5} \ (= \alpha)$			Condone decimals/degrees
	$x = \pi - \alpha$; OE	M1		OE eg $2x = 2\pi - \frac{4\pi}{5}$
				Correct quadrant; condone degrees/decimals/mix
	$x = \pi + \alpha$; $x = 2\pi - \alpha$; OE	m1		Need both (OE for $2x=$) with no extras (quadrants) within the given interval. Condone degrees/decimals/mix
	$x = \frac{2\pi}{5}, \frac{3\pi}{5}, \frac{7\pi}{5}, \frac{8\pi}{5}$	A1	4	Need all 4 solutions for x but condone unsimplified provided in terms of π
				Ignore extra values outside the given interval.
	Total		12	

Q	Solution	Marks	Total	Comments
9(a)	$3\log_a x = \log_a 8 \implies \log_a x^3 = \log_a 8$	M1		OE use of the log law
	$x^3 = 8 \Longrightarrow x = 2$	A1	2	
(b)	$3\log_a 6 - \log_a 8 = \log_a 6^3 - \log_a 8$	M1		Correct use of one log law
	$= \log_a \frac{6^3}{8}$	M1		Correct use of a different log law
	$= \log_a \frac{216}{8} = \log_a 27$	A1	3	CSO AG (be convinced)
(c)(i)	${p =} 3\log_{10} 3 - \log_{10} 8$	M1		Substitute $x = 3$
	$p = \log_{10} \frac{3^3}{8} = \log_{10} \frac{27}{8}$	A1	2	AG (be convinced)
(ii)	Gradient of $PQ = \frac{q-p}{6-3}$	M1		used $\frac{\text{difference in } y\text{-coords}}{\text{difference in } x\text{-coords}}$
	$\dots = \frac{\log_{10} 27 - \log_{10} \frac{27}{8}}{3}$	A1		Any correct exact form
	$\dots = \frac{1}{3}\log_{10}\left(27 \div \frac{27}{8}\right)$	ml		Correct use of log law
	Gradient = $\frac{1}{3}\log_{10} 8 = \log_{10} 2$	A1	4	AG (be convinced)
	Total		11	
	TOTAL		75	

Mathematics 6360

MPC2 Pure Core 2

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

June 07

Q	Solution	Marks	Total	Comments
1(a)(i)	x^2	B1	1	
	1			
(11)	$x^{\frac{1}{2}} = \sqrt{x}$	B 1	1	Accept either form
		DI	1	Accept entier form
(iii)	x^3	B1	1	
(b)(i)	$\int 2\pi^{\frac{1}{2}} dx = \frac{3\pi^{\frac{3}{2}}}{2\pi^{\frac{3}{2}}} (1, z)$			
	$\int 3x^2 dx = \frac{1}{3}x^2 \{\pm c\}$	M1		Index raised by 1
	$\overline{2}$	Al		Simplification not yet required
	$-2w^{\frac{3}{2}}$ + a	A1	3	Need simplification and the $+ c OE$
	$-2x^{-}+c$		5	
	1 2 2			
(11)	$\int_{-9}^{9} 3r^{\frac{1}{2}} dr = (2 \times 9^{\frac{3}{2}}) - (2 \times 1^{\frac{3}{2}})$	M1		E(0) = E(1) where $E(n)$ is condidate's
	$\int_{1}^{3x} dx (2 \times 3) (2 \times 1)$	IVI I		F(9) = F(1), where $F(x)$ is calculate s
	= 52	Δ1ft	2	Et on (b)(i) answer of form $kr^{1.5}$ i.e. $26k$
	52 Total	7111	8	
2(a)	$u_1 = 12$	B1		
	$u_2 = 3 \times 4^2 = 48$	B1	2	CSO AG (be convinced)
(b)	r = 4	B1	1	
(z)	(12)			
(C)(I)	$a(1-r^{12})$	M1		OF Using a correct formula with $n = 12$
	$\{s_{12}=\}$ <u>1-r</u>	1111		OE Using a correct formula with $n = 12$
	$12(1-4^{12})$			
	$=\frac{12(1-7)}{1-4}$	A1ft		Ft on answer for u_1 in (a) and r in (b)
	1 - 4			
	$-\frac{12(1-4^{12})}{4} - 4(1-4^{12}) - 4^{13} - 4$	Δ1	2	CAO Accept $k = 13$ for 4^{13} term
	-	AI	5	$C_{110} = 10 \text{ for } + 10 \text$
(ii)	$\sum_{n=1}^{12} (1^{13} + 1)$			
	$\sum_{n=2}^{\infty} u_n = (4^{-3} - 4) - u_1$			
	= 67108848	B1	1	
	Total		7	

MPC2 (cont				
Q	Solution	Marks	Total	Comments
3 (a)	Arc = $r\theta$	M1		For $r\theta$ or 20θ or PI by 20×1.4
	$28 = 20\theta \implies \theta = 1.4$	A1	2	AG
(b)	Area of sector = $\frac{1}{2}r^2\theta$	M1		$\frac{1}{2}r^2\theta$ OE seen
	$= \frac{1}{2}20^2(1.4) = 280 \text{ (cm}^2.)$	A1	2	Condone absent cm ² .
(c)(i)	Area triangle = $\frac{1}{2} \times 15 \times 20 \times \sin 1.4$	M1		Use of $\frac{1}{2}ab\sin C$ OE
	(= 147.8) Shaded area = Area of sector – area of triangle	M1		
	$= 280 - 147.8 = 132 \text{ (cm}^2.\text{) (3sf)}$	A1ft	3	Ft on [ans (b) – 147.8] to 3sf provided [] > 0
(ii)	$(BD^2 = 15^2 + 20^2 - 2 \times 15 \times 20\cos 14)$	M1		RHS of cosine rule used
	= 225 + 400 - 101.98	m1		Correct order of evaluation
	$\Rightarrow BD = \sqrt{523.019} = 22.86$	A 1	3	Condone absent cm
	= 22.9 (cm) to 3 st		10	
4(a)	20		10	Formula for S with $n = 29$ substituted and
	$\{S_{29} =\}\frac{29}{2} [2a+28d]$	M1		with a and d
	29(a+14d) = 1102	ml		Equation formed then some manipulation
	$a + 14d = \frac{1102}{29} \Rightarrow a + 14d = 38$	A1	3	CSO AG
(b)	$u_2 = a + d u_7 = a + 6d$	B1		Either expression correct
	$u_2 + u_7 = 13 \implies 2a + 7d = 13$	M1		Forming equation using $u_2 \& u_7$ both in
				form $a + kd$
	e.g. $21d = 63; 3a = -12$	m1		Solving $a + 14d = 38$ with candidate's ' $2a + 7d = 13$ ' to at least stage of elimination of either a or d
	a = -4 $d = 3$	A1	4	Both correct
	Total		7	

MPC2	(cont)
------	--------

Q	Solution	Marks	Total	Comments
5(a)	$y_P = 4$	B1	1	
(b)	$y = 1 + \frac{2}{x} + \frac{2}{x} + \frac{4}{x^2}$	B2,1,0	2	(B1 if only one error in the expansion)
	$y = 1 + 4x^{-1} + 4x^{-2}$			solution must be correct
(c)	$\frac{dy}{dx} = -4x^{-2} - 8x^{-3}$	M1		Index reduced by 1 after differentiating x to a negative power
		A1ft A1	3	At least 1 term in <i>x</i> correct ft on expn CSO Full correct solution. ACF
(d)	When $r = 2$ $dy = 4 \times 2^{-2}$ 8×2^{-3}			
	when $x = 2$, $\frac{dx}{dx} = -4 \times 2 = -6 \times 2$	M1		Attempt to find $y'(2)$.
	Gradient = -1 - 1 = -2	A1	2	AG (be convinced-no errors seen)
(e)	$-2 \times m' = -1$	M1		$m_1 \times m_2 = -1$ OE stated or used. PI
	v-4=m(x-2)	M1		$C's v_p$ from part (a) if not recovered;
	y()			m must be numerical.
	$y-4 = \frac{1}{2}(x-2)$	Alft		Ft on candidate's y_P from part (a) if not
	x - 2y + 6 = 0	A1	4	CAO Must be this or $0 = x - 2y + 6$
	Total		12	
6(a)	$v_{i} = 3(2^{0} + 1)$	M1		Substituting $x = 0$ PI
	= 6	Δ 1	2	
	0	211	2	
(b)	h=2	B1		PI
	Integral = $h/2$ {} { } = f(0) + 2[f(2) + f(4)] + f(6)	M1		OE summing of areas of the three trans
	$\Omega = 6 + 2[3 \times 5 + 3 \times 17] + 3 \times 65$	Al		Condone 1 numerical slip {ft on (a) for
	= 6 + 2[15 + 51] + 195			f(0) if not recovered}
	Integral = 333	Δ 1	4	[Sum of 3 traps. $= 21 + 66 + 246$]
	Integral – 555	AI	4	CAU
(c)(i)	$21 = 3(2^x + 1) \Longrightarrow 2^x = 6$	B1	1	AG (be convinced)
(ii)	$\log_{10} 2^x = \log_{10} 6$	M1		Take ln or \log_{10} of both sides of $a^x = b$
				or other relevant base if clear. The
	$x \log_{10} 2 = \log_{10} 6$	ml		equation $a = b$ used must be correct. Use of $\log 2^x = x \log 2$ OE
	$x = \frac{\lg 6}{\lg 2} = 2.5849 = 2.58$ to 3sf	Al	3	Both method marks must have been
	-0-			awarded.
	Total		10	

MPC2 (cont				
Q	Solution	Marks	Total	Comments
7(a)	111	M1		Correct shape of branch from <i>O</i> {to 90°} or correct shapes of branches from 90°- 360°
	0 90° 180° 270° 360° x	A1		Complete graph for $0^{\circ} \le x \le 360^{\circ}$ (Asymptotes not explicitly required but graphs should show 'tendency')
	I I	A1	3	Correct scaling on <i>x</i> -axis $0^{\circ} \le x \le 360^{\circ}$
(b)	61°; 241°	B1 B1	2	For 61° For 241° and no 'extras' in the interval $0^{\circ} \le x \le 360^{\circ}$
(c)(i)	$\sin\theta = -\cos\theta \implies \frac{\sin\theta}{\cos\theta} = -1$	B1	1	AG: be convinced that the identity
	$\Rightarrow \tan \theta = -1.$			$\frac{\sin\theta}{\cos\theta} = \tan\theta$ is known and validly used
(ii)	$\Rightarrow \tan(x - 20^\circ) = -1$	M1		
	$x - 20^\circ = \tan^3(-1)$ $x - 20^\circ = 135^\circ, 315^\circ \dots$	ml		
	$x = 155^{\circ};$	A1	4	$\Gamma_{4} = 0.(100 + 0.1552)$ and $\eta_{2} \leq 0.000$
	335	Alft	4	given interval.
(d)	Translation $\begin{bmatrix} 20 \\ 0 \end{bmatrix}$	B1 B1	2	'Translation'/'translate(d)' Accept equivalent in words provided linked to 'translation/move/shift' (Note: B0B1 is possible)
(e)	$f(x) = \tan 4x$	B1	1	For tan 4 <i>x</i>
	Total		13	
8(a)	$\log_a n = \log_a 3(2n-1)$	M1		OE Log law used PI by next line
	\Rightarrow $n = 3(2n-1)$	m1		OE, but must not have any logs.
	$\Rightarrow 3 = 5n \Rightarrow n = \frac{3}{5}$	A1	3	
(b)(i)	$\log_a x = 3 \Longrightarrow x = a^3$	B1	1	
(ii)	$\log_a y - \log_a 2^3 = 4$	M1		$3\log 2 = \log 2^3$ seen or used any time in (ii)
	$\log_{a} \frac{y}{a^{3}} = 4 \begin{cases} xy = a^{7} \times a^{\left(3\log_{a} 2\right)} \\ \text{or} \end{cases}$	M1		Correct method leading to an equation involving y (or xy) and a log but not involving + or -
	$y = a^4 \times a^{\left(3\log_a^2\right)}$			
	$\frac{y}{2^3} = a^4 \qquad \begin{cases} xy = a^7 \times 2^3 \\ \text{or} \end{cases}$	ml		Correct method to eliminate ALL logs e.g. using $\log_a N = k \Rightarrow N = a^k$
	$y = a^4 \times 2^3$			or using $a^{\log_a c} = c$
	$by = a^3 \times 8a^4$ or $8a^7$	A1	4	
	Total		8	
	TOTAL		75	

Mathematics 6360

MPC2 Pure Core 2

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

Μ	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
E	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
-x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC2		1		
Q	Solution	Marks	Total	Comments
1(a)	Area of sector = $\frac{1}{2}r^2\theta = \frac{1}{2} \times 6^2 \times \theta$	M1		$\frac{1}{2}r^2\theta$ seen or used
	$6 \times 3 = 2 \times \frac{1}{2} \times 6^2 \times \theta$	m1		OE Forming equation
	$36\theta = 18 \Longrightarrow \theta = 0.5$	A1	3	AG
(b)	Arc = 6θ ; = 3 cm \Rightarrow Perimeter = 12 + arc = 15 cm	M1 A1 A1F	3	$r\theta$ seen or used PI by a correct perimeter Ft wrong evaluation of 6θ . Condone missing/wrong units throughout the question.
	Total		6	
2(a)	(d) = 7	B1	1	7
(b)	$(101^{\text{st}} \text{ term}) = a + (101-1) d$ = 51 + 100(7) = 751	M1 A1F	2	Ft on c's answer for d. NMS/rep. addn., give both marks for '751'. SC if M0, award B1 for $7n+44$ OE Formula for $\{S_i\}$ with [any 3 of
	$S_n = \frac{100}{2} [751 + 1444] \text{ or}$ $S_n = \frac{100}{2} [2 \times 751 + (100 - 1)7]$	M1		a = c's 751 (condoning '751'±d) or d = c's 7 or n =100 or l = 1444 substituted] or [S ₂₀₀ -S _k with k=100, (condoning k=99 or 101) stated/used with correct ft substitution in S ₂₀₀ or S _k]
	= 109 750	A1	2	
	Total		5	
3 (a)	$\frac{BC}{\sin 72} = \frac{18.7}{\sin 50} [=24.4]$	M1		Use of the sine rule
	$BC = \frac{18.7\sin 72}{\sin 50}$	m1		Rearrangement
	$(BC)=23.21(6)$ {= 23.2 to nearest 0.1cm}	A1	3	AG Need >1dp if using cm eg 23.21 or 23.22; at least 1dp if using mm.
(b)	Angle $C = 180^{\circ} - (50^{\circ} + 72^{\circ}) = 58^{\circ}$	M1		Valid method to find either angle C (PI eg by sin C = $0.848(04)$) or side AB
	Area of triangle = $0.5 \times 18.7 \times 23.2 \times \sin C$	M1		OE eg $0.5 \times 18.7 \times AB \times \sin 72^\circ$
	$\dots = 184 \text{ cm}^2$	A1	3	Accept 183.8 to 184.2 Condone missing/wrong units
	Total		6	

MPC2 (cont				
Q	Solution	Marks	Total	Comments
4	h = 1	B1		PI
	$I \approx \frac{h}{2} \{ \dots \}$	M1		
	$2^{(1)}$	MI		'trapezia'
	$\{\dots\} = f(0)+f(3)+2[f(1)+f(2)]$ $\{\dots\} = \sqrt{3} + \sqrt{12} + 2[\sqrt{4} + \sqrt{7}]$	A1		$(\Sigma trap=1.866.+2.3228.+3.0549)$
	1			
	$(I \approx) \frac{1}{2} [5.19615. + 2 \times 4.64575]$			
	$\begin{bmatrix} 1 \\ -1 \end{bmatrix} = 72438 = 7244$	A 1	4	CAO Must ha 2dp
	$= \frac{-1}{2} \begin{bmatrix} 14.4870 \end{bmatrix} - 7.2438 7.244$	AI	4	CAO Must be 5dp.
	Total		4	
5a(i)	$\frac{dy}{dt} = 4 \times \frac{1}{2} r^{\frac{1}{2}} - \frac{3}{2} r^{\frac{1}{2}} = 2r^{\frac{1}{2}} - \frac{3}{2} r^{\frac{1}{2}}$		3	A power decreased by 1 A1 for each correct term
	$dx = \frac{1}{2}x + \frac{1}$	AIAI	5	AT for each concerterin
(ii)	At $P(4,0), \frac{dy}{dt} = \frac{2}{\sqrt{t}} - \frac{3}{2} \times 2$	M1		Attempts $\frac{dy}{dx}$ when $x = 4$
	$dx \sqrt{4} 2$	1011		dx
	= 1-3 = -2	A1	2	AG
(iii)	Gradient of normal = 1	M1		Use of on stating $m/m' = 1$
()	$\frac{1}{2}$	1011		Use of or stating $m \times m = -1$
	Equation of normal is $y - 0 = m[x - 4]$	M1		<i>m</i> numerical; can be awarded even if $m = -2$
	1			m = -2
	$y-0 = \frac{1}{2}(x-4) \Longrightarrow 2y = x-4$	A1	3	ACF of the equation
(iv)	At Q , $x = 0$, $2y = 0 - 4$	M1		PI
	$y_Q = -2$	A1F		Ft on a linear equation for normal
	Area of triangle $OPQ = 0.5 \times 4 \times y_Q $			provided y_Q is negative and prev A1 is
	= 4	B1F	3	lost Et on c's negative y
		211	C	
(v)	$-\frac{1}{2}$ 3 $\frac{1}{2}$ $-\frac{1}{2}$ 3 $\frac{1}{2}$	M1		Puts c's $\frac{dy}{dt} = 0$ and a 1 st step in attempt to
	$2x^{-2} - \frac{1}{2}x^2 = 0 \implies 2x^{-2} = \frac{1}{2}x^2$			dx
				solve.
	$2 = \frac{3}{2}x$; $\Rightarrow x = \frac{4}{2}$	m1;		Valid method to <i>ax=b</i>
	2 3	A1	3	Condone 1.3 or better
(b)(i)	$(1 \ 3) \ \frac{3}{2} \ \frac{5}{2}$			_
	$\int \left 4x^{\overline{2}} - x^{\overline{2}} \right dx = 4 \frac{x^2}{15} - \frac{x^2}{25} \{ +c \}$		3	One power correct
		А1,А1	5	
	$-\frac{8}{7}r^{\frac{3}{2}}-\frac{2}{7}r^{\frac{5}{2}}(+c)$			
	-3^{2} 5 ² (10)			
(ii)	$\frac{3}{4^2} \frac{5}{4^2}$	M1		$F(4) - \{F(0)\}$
	Area under curve = $4\frac{1}{1.5} - \frac{7}{2.5} - \{0\}$	1411		
	Total area = $F(4)$ + area triangle OPQ	m1		
	Total area = $\frac{128}{4} + 4 = \frac{188}{4} = 125(3)$	A1	3	Accept 3 sf if clear
	15 15 15 12.5 (5)			
	Total		20	

MPC2 ((cont)
--------	--------

Q	Solution	Marks	Total	Comments
6(a)(i)	$(1+x)^3 = 1 + 3x + 3x^2 + x^3$	M1		Any valid method to expand $(1+x)^3$ fully
		A1	2	
(ii)	$(1+x)^4 = 1 + 4x + 6x^2 + 4x^3 + x^4$	M1		Any valid method to expand $(1+x)^4$ fully
		A1	2	
(b)(i)	$(1+4x)^3 = 1+3(4x)+3(4x)^2+(4x)^3$	M1		
	$(1+4x)^3 = 1+12x+48x^2+64x^3$	A1√	2	Ft on one numerical slip in (a)(i)
(ii)	$(1+3x)^4$			
	$= 1 + 4(3x) + 6(3x)^{2} + 4(3x)^{3} + (3x)^{4}$	M1		
	$= 1 + 12x + 54x^2 + 108x^3 + 81x^4$	A1√	2	Ft on one numerical slip in (a)(ii)
	4 2			
(C)	$(1+3x)^4 - (1+4x)^3 = 1 + 12x + 54x^2 + $			
	$108x^3 + 81x^4 - (1 + 12x + 48x^2 + 64x^3)$	M1		Subtracts the answers to (b) with correct number of terms and combines at least two pairs of like terms.
	$= 6x^2 + 44x^3 + 81x^4$	A1	2	CAO
				SC : If no attempt in (b) but full expansions given in working for (c), mark retrospectively.
	Total		10	
7(a)	<i>x</i> = 8	B1	1	No clear log law errors seen. Condone answer left as $\frac{16}{2}$
(b)	$\log_a y = \log_a 3^2 + \log_a 4 + 1$	M1		One law of logs used correctly
	$\log_a y = \log_a \left(3^2 \times 4 \right) + 1$	M1		Either a second law of logs used correctly or the 1 written as $\log_a a$
	$\log_a y = \log_a \left(3^2 \times 4\right) + \log_a a = \log_a 36a$			
	$\Rightarrow y = 36a$	A1	3	CSO
	Total		4	
0	G a lr-4	Manle	T.4-1	Commenter
---------------	--	----------	-------	--
Q	Solution	Marks	Total	Comments
8(a)	y y	BI		Shape (graph must clearly go below the intersection pt.). Condone if <i>x</i> -axis is a tangent
	(0,1)	B1	2	Only intersection with y-axis at (0, 1) stated/indicated (accept 1 on y-axis as equivalent) 0
(b)(i)	Stretch (I) in <i>x</i> -direction (II) scale factor 0.5 (III)	M1 A1	2	Need(I) & one of (II),(III) M0 if >1 transformation
(ii)	Translation;	B1;		Must be 'Translation' or 'translate(d)' for 1 st B mark
		B1	2	Accept full equivalent to vector in words provided linked to 'translation/ move/shift' and negative <i>x</i> -direction (Note: B0 B1 is possible)
	ALTn: Stretch (I) in y-direction (II) scale factor 3 (III)			[Mark the alternative as in (b)(i).]
(c)(i)	$9^{x} = (3^{2})^{x} = 3^{2x} = (3^{x})^{2} = Y^{2};$ $3^{x+1} = 3^{x} \times 3^{1} = 3Y$ $0^{x} = 2^{x+1} + 2 = 0 x Y^{2} = 2Y + 2 = 0$	M1		Justifying either $9^x = Y^2$ or $3^{x+1} = 3Y$
	$9 - 3 + 2 = 0 \Longrightarrow Y - 3Y + 2 = 0$ $\Rightarrow (Y - 1)(Y - 2) = 0$	A1	2	AG
(ii)	$Y = 1 \implies 3^x = 1 \implies x = 0$	B1		AG (Accept direct substitution if convinced)
	$Y = 2 \implies 3^x = 2$			
	$\log_{10} 3^x = \log_{10} 2$	M1		Takes logs of both, PI by 'correct' value(s) later. or $x = \log_3 2$ seen
	$x \log_{10} 3 = \log_{10} 2$	m1		Use of $\log 3^x = x \log 3$ or $\log_3 2 = \frac{\lg 2}{\lg 3}$ OE (PI by $\log_3 2 = 0.630$ or 0.631 or better)
	$x = \frac{\lg 2}{\lg 3} = 0.630929 = 0.6309$ to 4dp	A1	4	Must show that logarithms have been used otherwise 0/3
	Tota		12	

MPC2 (cont)			
Q	Solution	Marks	Total	Comments
9(a)	$\frac{3+\sin^2\theta}{\cos\theta-2} = 3\cos\theta$ $3+(1-\cos^2\theta)$			
	$\Rightarrow \frac{\partial F(1 - \cos \theta)}{\cos \theta - 2} = 3\cos \theta$	M1		$\cos^2 \theta + \sin^2 \theta = 1$ stated or used [If cand starts with $\cos \theta = -\frac{1}{2}$ and gets $\sin^2 \theta = \frac{3}{4}$ without explicitly finding value for θ and verifies 1 st equation is true, award M1moA0]
	$\Rightarrow \frac{4 - \cos^2 \theta}{\cos \theta - 2} = 3 \cos \theta$			
	$\Rightarrow \frac{(2 - \cos \theta) (2 + \cos \theta)}{\cos \theta - 2} = 3 \cos \theta$	m1		Difference of two squares
				or division (PI by next line)
	$\Rightarrow -1(2+\cos\theta) = 3\cos\theta$	A1		
	$\Rightarrow -2 = 4\cos\theta \Rightarrow \cos\theta = -\frac{1}{2}$	A1	4	CSO AG
	Alternative for (a)			
	$3+1-\cos^2\theta=3\cos^2\theta-6\cos\theta$	(M1)		$\cos^2\theta + \sin^2\theta = 1$
	$(4\cos\theta + 2)(\cos\theta - 2) = 0$	(m1)		Factorising or formula
	$\cos\theta - 2 \neq 0$	(A1)		Indicates rejection of $\cos\theta = 2$
	$\Rightarrow 4\cos\theta = -2 \Rightarrow \cos\theta = -\frac{1}{2}$	(A1)		AG Be convinced
(b)	$\theta = 3x \implies \cos 3x = -\frac{1}{2}$	M1		Uses part (a) to reach either $\cos 3x = -0.5$ or $\cos 3x = 0.5$
	$\cos^{-1}\left(-\frac{1}{2}\right) = 120^{\circ}$	m1		Or $\cos^{-1}(0.5) = 60^{\circ}$ Condone radians here
	$3x = 120^{\circ}, 240^{\circ}, 480^{\circ}, \dots$			
	$x = 40^{\circ}, 80^{\circ}, 160^{\circ}$	A2,1,0	4	A1 for at least two correct.
				If >3 solutions in the interval $0^{\circ} < x < 180^{\circ}$, deduct 1 mark from any A marks for each extra solution.
				Deduct 1 mark from any A marks if answers in radians. Ignore extra values outside the given interval.
	Total		8	
	TOTAL		75	

Mathematics 6360

MPC2 Pure Core 2

Mark Scheme

2008 examination - June series

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
E	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
-x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MPC2				
Q	Solution	Marks	Total	Comments
1 (a)	$\sqrt{x^3} = x^{\frac{3}{2}}$	B1	1	OE; accept ' $k = 1.5$ '
(b)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - \frac{3}{2}x^{\frac{1}{2}}$	M1 B1 A1F	3	At least one index reduced by 1 and no term of the form $\sqrt{ax^2}$. For 2x For $-1.5 x^{0.5}$. Ft on ans (a) non-integer k
(ii)	When $x = 4$, $y = 8$	B1		
	y '(4) = ;	M1		Attempt to find $\frac{dy}{dx}$ when $x = 4$
	$= 2(4) - 1.5(\sqrt{4}) = 5$	A1F		Ft on one earlier error provided non- integer powers in (a) and (b)(i)
	Tangent: $y-8 = 5(x-4)$ y = 5x - 12	m1 A1	5	y - y(4) = y'(4)[x - 4] OE CSO; must be $y = 5x - 12$
	Total		9	
2(a)	Arc $PQ = r\theta$ = 6π (cm)	M1 A1	2	$r\theta$ Condone missing units throughout the paper
(b)	$\alpha + \alpha + \frac{3\pi}{7} = \pi$	M1		OE
	$\alpha = \frac{2\pi}{7}$	A1	2	Accept equivalent fractions eg $\frac{4\pi}{14}$ and condone 0.286π or better
(c)	Chord $PQ = 2 \times 14 \times \cos \alpha$	M1		OE eg $2 \times 14 \times \sin \frac{3\pi}{14}$ or 17.45-17.5 inclusive or $\sqrt{14^2 + 14^2 - 2 \times 14^2 \times \cos \frac{3\pi}{7}}$
	Perimeter = $17.45 + 6\pi$ = $36.307 = 36.3$ (cm)	A1	2	Condone > 3sf
	Total		6	
3(a)	$r = 16 \div 20 = 0.8$	B1	1	OE
(b)	$\frac{a}{1-r} = \frac{20}{1-0.8}$	M1		OE Using a correct formula with $a = 20$ or $r = c$'s 0.8
	= 100	A1F	2	ft on c's value of r provided $ r < 1$
(c)	$\{S_{20} =\} \frac{a(1-r^{20})}{1-r}$	M1		OE Using a correct formula with $n = 20$
	$= 100(1 - 0.8^{20}) = 98.847\{07\}$	A1	2	Condone > 3dp
(d)	<i>n</i> th term = 20 $r^{n-1} = 20(0.8)^{n-1}$ = 20×0.8 ⁻¹ ×0.8 ⁿ	M1		Ft on c's r . Award even if 16^{n-1} seen
	$= 25 \times 0.8^{n}$	A1	2	CSO; AG
	Total		7	

MPC2 (cont)

Q	Solution	Marks	Total	Comments
4 (a)	$\{BC^2 = \}7.6^2 + 8.3^2 - 2 \times 7.6 \times 8.3\cos 65$	M1		RHS of cosine rule used
	$\dots = 57.76 + 68.89 - 53.3175\dots$	m1		Correct order of evaluation
	$BC = \sqrt{73.33} = 8.563$ (= 8.56 m)	A1	3	AG; must see $\sqrt{73.33}$ or > 3sf value
(b)	Area triangle = $\frac{1}{2} \times 7.6 \times 8.3 \times \sin 65$	M1		Use of $\frac{1}{2}bc\sin A$ OE
	$= 28.58 = 28.6 \text{ (m}^2\text{)}$	A1	2	Condone > 3sf
(c)	Area of triangle = $0.5 \times BC \times AD$ $AD = [Ans (b)] \div [0.5 \times Ans (a)]$	M1 m1		Or valid method to find $\sin B$ or $\sin C$ Or $AD = 7.6\sin B$; Or $AD = 8.3\sin C$
	AD = 6.67 = 6.7 (m)	A1	3	If not 6.7 accept 6.65 to 6.69 inclusive.
	Total		8	
5(a)(i)	$\log_a 1 = 0$	B1	1	
(ii)	$\log_a a = 1$	B1	1	
(b)	$\log_a x = \log_a (5 \times 6) - \log_a 1.5$	M1		One law of logs used correctly
	$\log_a x = \log_a \left(\frac{5 \times 6}{1.5}\right)$	M1		A second law of logs used correctly
	$\log_a x = \log_a 20 \Longrightarrow x = 20$	A1	3	
	Total		5	
6(a)	8 = -8p + q	M1		Either equation. PI eg by combined eqn.
	4 = 8p + q	A1		Both (condone embedded values for the M1A1)
		m1		Valid method to solve two simultaneous equations in p and q to find either p or q
	q = 6	A1		AG (condone if left as a fraction)
	p = -0.25	B1	5	OE
(b)	$u_4 = 5$	B1F	1	Ft on $(6 + 4p)$
(c)(i)	L = pL + q; $(L = -0.25 L + 6)$	M1	1	OE
(ii)	$L = \frac{q}{1 - p}$	m1		Rearranging
	$L = \frac{6}{1.25} = 4.8$	A1F	2	Ft on $\frac{6}{1-p}$ Dependent on previous two marks
	Total		9	Dependent on previous two marks
L	10001	1	-	

MPC2 (cont	;)			
Q	Solution	Marks	Total	Comments
7(a)	$\left(1 + \frac{4}{x^2}\right)^3 = \left[1^3\right] + 3(1^2)\left(\frac{4}{x^2}\right) + 3(1)\left(\frac{4}{x^2}\right)^2 + \left[\left(\frac{4}{x^2}\right)^3\right]$	M1		Any valid method as far as term(s) in $1/x^2$ and term(s) in $1/x^4$
	$= [1] + \frac{12}{x^2} + \frac{48}{x^4} + \left[\frac{64}{x^6}\right]$	A1		$p = 12$ Accept $\frac{12}{x^2}$ even within a series
		A1	3	$q = 48$ Accept $\frac{48}{x^4}$ even within a series
(b)(i)	$\int \left(1 + \frac{4}{x^2}\right)^3 dx$			
	$= \int (1 + \frac{p}{x^2} + \frac{q}{x^4} + \frac{64}{x^6}) dx$	M1		Integral of an 'expansion', at least 3 terms PI by the next line
	$= x - px^{-1} - \frac{q}{3}x^{-3} - \frac{64}{5}x^{-5} (+c)$	m1 A2F,1	4	At least two powers correctly obtained Ft on c's non-zero integer values for p and q (A1F for two terms correct; can be unsimplified)
	$= x - 12x^{-1} - 16x^{-3} - \frac{64}{5}x^{-5} (+c)$			Condone missing c but check that signs have been simplified at some stage before the award of both A marks.
(ii)	$\left(2 - \frac{p}{2} - \frac{q}{3(8)} - \frac{64}{5(32)}\right) - $	M1		
	$ \left \begin{pmatrix} 1-p-\frac{q}{3}-\frac{64}{5} \end{pmatrix} \right = 33.4 $	A1	2	F(2) - F(1), where $F(x)$ is cand's answer or the correct answer to (b)(i). CSO
	Total		9	
L	i otur		-	

Solution Marks Total **Comments** Q 8(a)(i) h = 0.5**B**1 PI Integral = $h/2 \{ \}$ {..}=f(0)+2[f($\frac{1}{2}$)+f(1)+f($\frac{3}{2}$]+f(2) OE summing of areas of the four traps. M1 $\{ \} = 1 + 2\left\lceil \sqrt{6} + 6 + 6\sqrt{6} \right\rceil + 36$ Condone 1 numerical slip. Accept 3sf A1 = 1+2[2.449..+6+14.6969..]+36values if not exact. $= 37 + 2 \times 23.146.. = 83.292...$ Integral = $0.25 \times 83.292... = 20.8$ (3sf) 4 A1 CAO; must be 20.8 Accept single trapezium with its sloping (ii) Relevant trapezia drawn on a copy of M1 side above the curve given graph {Approximation is an}overestimate Dep. on 4 trapezia with each of their A1 2 upper vertices lying on the curve (b)(i) Stretch (I) in x-direction (II) M1 Need (I) and one of (II), (III) M0 if more than one transformation (scale factor) $\frac{1}{3}$ (III) A1 2 (ii) $6^{3x} = 84$ M1 PI Take logs of both sides of $a^x = b$, PI by $\log_{10} 6^{3x} = \log_{10} 84$ M1 'correct' value(s) later or $3x = \log_6 84$ Use of $\log 6^{3x} = 3x \log 6$ OE $3x \log_{10} 6 = \log_{10} 84$ m1or $3x = \log_6 84$ seen $x = \frac{\lg 84}{3\lg 6}$ Must see that logs have been used before x = 0.82429... = 0.824 (to 3dp) A1 4 any of the last 3 marks are awarded in (b)(ii). Condone > 3dp(c) $f(x) = 6^{x-1} - 2$ B1 for either $6^{x-1}+2$ or for $6^{x+1}-2$ B2,1 2 Total 14 2x = 48PI by $x = \overline{24^{\circ}}$ 9(a) **B**1 2x = 180 - 48M1 Accept equivalents for *x* 2x = 360 + 48 and 2x = 360 + 180 - 48M1 Accept equivalents for *x* $x = 24^{\circ}, 66^{\circ}, 204^{\circ}, 246^{\circ}$ 4 CAO; need all four, no extras in given A1 interval $\frac{\sin\theta}{\cos\theta} = \tan\theta$ **(b)** M1 Stated or used $2\sin\theta - 3\cos\theta = 0 \Longrightarrow \tan\theta = 1.5$ A1 $\theta = 56.3^{\circ}$ A1 Condone > 1dp4 Ft on c's PV+180° dep only on the M1 $\theta = 56.3^{\circ} + 180^{\circ} = 236.3^{\circ}$ A1F provided no 'extra' solutions in the given interval. Total 8

MPC2 (cont)

75

TOTAL

Mathematics 6360

MPC2 Pure Core 2

Mark Scheme

2009 examination - January series

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks an	d is for method	and accuracy			
Е	mark is for explanation					
$\sqrt{10}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only MR mis-read					
CSO	correct solution only RA required accuracy					
AWFW	anything which falls within FW further work					
AWRT	anything which rounds to ISW ignore subsequent work					
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MPC2				
Q	Solution	Marks	Total	Comments
1 (a)	{Area of sector =} $\frac{1}{2}r^2\theta$	M1		$\frac{1}{2}r^2\theta$ stated or used for area of sector. PI
	$=\frac{1}{2}\times10^{2}\times0.8=40~\{\text{cm}^{2}\}$	A1	2	
(b)(i)	{Arc =} $r\theta$ = 8	M1 A1		$r\theta$ stated or used for arc length. PI PI
	Perimeter = $20 + r\theta = 28$ (cm)	A1ft	3	ft on $20 + r \times \theta$
(ii)	Area of square = $\left[\frac{c's \text{ answer for } (b)(i)}{4}\right]^2$	M1		Ы
	$= 49 \{ cm^2 \}$	Alcao	2	
2(a)		D1	1	זמ
2(a)	$f(x) = x^2 \sqrt{x^2 - 1}$ Integral = $h/2$ { }	DI		
	$\{\dots\} = f(1.5) + 2[f(3) + f(4.5)] + f(6)$	M1		For the M1 covered range must be 1.5 to 6 OE summing of areas of the three traps.
	{} = 2.51(5)+2[25.4(5)+88.8(4)]+212(.9)	A1		Check at least 3sf values, rounded or truncated, or award if a combined value WRT 444 is seen or final answer is 333 or rounds to 333 Condone one numerical slip
	Integral = $0.75 \times 444.1 = 333$ to 3sf	A1cao	4	Must have 333
				Treat using 4 strips as a MR and mark with max of B0M1A1A1cao as follows: h = 1.125 B0 {} =f(1.5)+2[f(2.625)+f(3.75)+f(4.875)]+f(6) M1 =2.51(5)+2[16.7(2)+50.8(2)+113(.3)]+212(.9) A1 or award if a combined value WRT 577 is seen or final answer is 325 or rounds to 325. Condone one numerical slip. Answer = 325 A1cao Must have 325
(b)	Increase the number of ordinates	E1	1	OE eg increase the number of strips
	Total		5	

MPC2 (cont)			
Q	Solution	Marks	Total	Comments
3(a)	{Area =} $\frac{1}{2} \times 7.4 \times 5.26 \times \sin 63^\circ$	M1		
	$= 17.3(407) \{m^2\}$	A1	2	Accept any value from 17.3 to 17.341
(b)	$\{BC^2 = \} 5.26^2 + 7.4^2 - 2 \times 5.26 \times 7.4 \cos 63$	M1		RHS of cosine rule used
	$\dots = 27.66(76) + 54.76 - 35.34(22)$	m1		Correct order of evaluation
	$\Rightarrow BC = \sqrt{47.08(5)} = 6.861(8)$			
	$BC = 6.86 \{m\}$ to 3sf	A1	3	AG. Cand. must show a 4 th sf in either $\sqrt{47.08(5)}$ or 6.861(8) before giving the printed answer 6.86
(c)	$\frac{\sin B}{5.26} = \frac{\sin 63}{BC}$	M1		Sine rule involving 'sin B ' [If valid cosine rule used to find cos B , no marks awarded until stage of converting to sin B]
	$\sin B = 0.68 \text{ to } 2\text{sf}$ ALTn	A1	2	If not 0.68, accept AWRT any value from 0.682 to 0.684 inclusive
	$\frac{1}{2} \times 7.4 \times (6.86) \times \sin B = \text{c's ans}(a)$	(M1)		(6.86) could be c's ans (b)
	$\sin B = 0.68 \text{ to } 2\text{sf}$	(A1)		If not 0.68, accept AWRT any value from 0.682 to 0.684 inclusive
	Total		7	

0	Solution	Marks	Total	Comments
4 (a)(i)	$\frac{dy}{dx} = 3x^{\frac{1}{2}}$	M1		$kx^{\frac{1}{2}}$ with or without + c
	$= 6 \{ \text{when } x = 4 \}$	A1cao	2	Must be 6 and seen in (a)(i) 6 + c is A0
(ii)	y-coordinate of $A = 2 \times 4^{\frac{3}{2}}$ (= 16)	M1		Substitute $x = 4$ in $y = 2x^{\frac{3}{2}}$
	$6 \times m' = -1$	M1		$m_1 \times m_2 = -1$ OE used with c's value of $\frac{dy}{dx}$ when $x = 4$. PI
	y-16=m(x-4)	m1		dep on 1^{st} M1 in (a)(ii) m must be numerical
	$y - 16 = -\frac{1}{6}(x - 4)$	A1	4	ACF
(b)(i)	$\int 8x^{\frac{1}{2}} dx = \frac{8}{\frac{3}{2}}x^{\frac{1}{2}+1} \{+c\}$	M1		Index raised by 1
	$=\frac{16}{3}x^{\frac{3}{2}} \{+c\}$	A1	2	Condone missing '+ c ' Coefficient must be simplified
(ii)	$\int 2x^{\frac{3}{2}} dx = \frac{2}{5/2} x^{\frac{5}{2}} \{+c\} \qquad \{=\frac{4}{5} x^{\frac{5}{2}} \{+c\}\}\$	B1		Can award for unsimplified form
	$\int_{0}^{4} 8x^{\frac{1}{2}} dx - \int_{0}^{4} 2x^{\frac{3}{2}} dx$	M1		Ignore limits here
	$=\frac{16}{3}(4)^{\frac{3}{2}}-0-\left[\frac{4}{5}(4)^{\frac{5}{2}}-0\right]$	M1		$F(4) - F(0)$ used in either; { $F(0)=0$ PI} Cand. must be using $F(x)$ as a result of his/her integration in (b)(i) or in the (b)(ii B1 line above
	$=\frac{256}{15}$	A1	4	Accept any value from 17.04 to 17.1 inclusive in place of 256/15
(c)	Translation	B1		Accept 'translat' as equivalent [T or Tr is NOT sufficient]
	$\begin{bmatrix} -3\\ 0 \end{bmatrix}$	B1	2	Accept equivalent in words provided linked to 'translation/move/shift' (B0B0 if >1 transformation)
	Total		14	

MPC2 (cor	nt)			
Q	Solution	Marks	Total	Comments
5(a)	$(1+2x)^{4} = 1 + 4(2x) + 6(2x)^{2} + 4(2x)^{3} + (2x)^{4}$	M1		(1), 4, 6, 4, (1) OE unsimplified with correct powers of <i>x</i>Algebraic multiplication must be a full method
	$= 1 + 8x + 24x^{2} + 32x^{3} \{+16x^{4}\}$	A1 A1 A1	4	Accept $a = 8$ provided 1 st term is 1 b = 24 c = 32
(b)	$(1-2x)^4 = 1 - 8x + 24x^2 - 32x^3 \{+16x^4\}$	M1 A1ft		Replace x by $-x$ even in M1 line of (a) PI ft c's non zero values for a , b and c
	$(1+2x)^{4} + (1-2x)^{4}$ = 1 + 8x + 24x ² + 32x ³ + 16x ⁴ + 1 - 8x + 24x ² - 32x ³ + 16x ⁴ = 2 + 48x ² + 32x ⁴	A1cso	3	AG Be convinced
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 96x + 128x^3$	M1		A correct power of x OE
	For st. pt. $96x + 128x^3 = 0$	A1		
	$32x(3 + 4x^2) = 0$ Since $3+4x^2 > 0$ there is only one stationary point	E1		Any valid explanation of curve having just one stationary point
	The coordinates of the stationary point are $(0, 2)$	B1	4	(0, 2) as the only stationary point
	Total		11	

MPC2 (cont				
Q	Solution	Marks	Total	Comments
6(a)(i)	$\log_a 40$	B1	1	Accept ' $k = 40$ '
(ii)	$\log_a 8$	B1	1	Accept ' $k = 8$ '
(iii)	$\log_a 125$	B1	1	Accept ' $k = 125$ ' but not ' $k = 5^3$ ',
(b)	$\log_{10} \left[\left(1.5 \right)^{3x} \right] = \log_{10} 7.5$	M1		Correct statement having taken logs of both sides of $(1.5)^{3x} = 7.5$ OE PI or $3x = \log_{1.5} 7.5$ seen
	$3x \log_{10} 1.5 = \log_{10} 7.5$	m1		$\log 1.5^{3x} = 3x \log 1.5 \text{ OE}$
	$x = \frac{\lg 7.5}{3\lg 1.5} = 1.65645 = 1.656 \text{ to } 3dp$	A1	3	Both method marks must have been awarded with clear use of logarithms seen
(c)	$\log_2 p = m \Longrightarrow p = 2^m$; $\log_8 q = n \Longrightarrow q = 8^n$	M1		Either $p = 2^m$ or $q = 8^n$ seen or used
	$p = 2^m$ and $q = 2^{3n}$	m1		Writing $8^n = 2^{3n}$ and having $p = 2^m$
	$pq = 2^m \times (2^3)^n = 2^m \times 2^{3n}$ so $pq = 2^{m+3n}$	A1	3	Accept $y = m + 3n$
	Total		9	

MPC2 (cont	:)			
Q	Solution	Marks	Total	Comments
7(a)	$\{x=\} \sin^{-1}(0.8) = 0.927(29) \{=\beta\}$	M1		$\sin^{-1}(0.8)$ PI
	$\{x=\}$ $\pi-\beta$	m1		
	x = 0.927(29), 2.21(42)	A1	3	Both Ignore values outside interval $0-2\pi$ but A0 if 'extra' values inside the given interval
(b)(i)	$\left(\frac{3\pi}{2},-1\right)$	B2,1	2	B1 if one coordinate correct or $\left(-1, \frac{3\pi}{2}\right)$
(ii)	$\pi - lpha$	B1	1	
(iii)	$RS = (2\pi - \alpha) - (\pi + \alpha)$	M1		OE eg $RS = PQ = (\pi - \alpha) - \alpha$
	$=\pi-2\alpha$	A1	2	Must be simplified
(c)	$y \uparrow (\frac{\pi}{4}, 1) (\frac{5\pi}{4}, 1)$	B1		Sine curve with positive gradient at O with at least 3 stationary points between 0 and 2π
	$\begin{array}{c c} \hline \\ \hline $	B1		Correct shaped curve with 2 max and 2 min between 0 and 2π
		B1		All 5 correct points of intersection with
				x-axis with $\frac{\pi}{2}$, π and $\frac{3\pi}{2}$ clearly shown
	Maximum points $\left(\frac{\pi}{4}, 1\right)$ and $\left(\frac{5\pi}{4}, 1\right)$	B2,1	5	B1 for either: 1 as the <i>y</i> -coordinate of max pt(s) or:
	stated or clearly shown on the sketch			two max pts between 0 and 2π with correct <i>x</i> -coordinates
	Total		13	

MPC2 (cont					-
Q	Solution		Marks	Total	Comments
8 (a)	$\{\mathbf{S}_{40} = \} \; \frac{40}{2} \Big[2a + (40 - 1)d \Big]$		M1		
	20(2a + 39d) = 1250		A1		
	$\{25^{\text{th}} \text{ term} =\} a + (25 - 1)d$		M1		
	a + 24d = 38		A1		
			m1		Dep on both previous two Ms. Solving two equations in a and d simultaneously
	$18d = 27 \implies d = 1.5$		A1cso	6	AG Be convinced SC Using the given answer for <i>d</i> : mark out of a maximum of 4/6 as M1A1M1A1{conclusion also needed in last A mark} (m0A0)
(b)	$a = 38 - 24 \times 1.5$		M1		PI if using $a = 2$ in (b)
	= 2				If using eg $a = 38$ award this M mark at stage: no. of terms $\frac{100-38}{1.5} + 1 + 24$
	a + (n - 1)1.5 < 100		M1		
	$n < \frac{100 - a}{1.5} + 1$				
	n < 66 333				
	\Rightarrow number of terms < 100 is 66		A1	3	NMS mark as B3 for 66 else B0
		Total		9	
		TOTAL		75	

Mathematics 6360

MPC2 Pure Core 2

Mark Scheme

2009 examination - June series

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is	for method and a	Iccuracy			
E	mark is for explanation					
or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MPC2				
Q	Solution	Marks	Total	Comments
1(a)	$5^2 = 7^2 + 8^2 - 2 \times 7 \times 8\cos\theta$	M1		Use of the cosine rule – must be correct (PI by the correct line below)
	$\cos\theta = \frac{7^2 + 8^2 - 5^2}{2 \times 7 \times 8} \left(=\frac{88}{112} = 0.7857\right)$	m1		Rearrangement
	$\theta = 38.21 = 38.2^{\circ}$ (to nearest 0.1°)	A1	3	CSO (Must see either exact value for $\cos\theta$ or at least 4sf value for either $\cos\theta$ or θ before the printed answer 38.2°) AG
(b)	Area = $\frac{1}{2} \times 7 \times 8\sin\theta$	M1		OE eg Area = $\sqrt{10(10-5)(10-8)(10-7)}$ (= $\sqrt{300}$)
	$= 17.3 \{ cm^2 \}$ to 3sf	A1	2	Condone 17.31 to 17.33 inclusive
	Total		5	
2(a)	(n =) - 4	B1	1	Accept x^{-4}
(b)	$\left(1+\frac{3}{x^2}\right)^2 = 1+\frac{6}{x^2}+\frac{9}{x^4}$	B2,1,0	2	Apply ISW after B2 stage (B1 if correct but unsimplified seen)
(c)	$\int \left(1 + \frac{3}{x^2}\right)^2 dx = x - 6x^{-1} - 3x^{-3} + c$	M1 A2,1,0	3	At least one power of x correctly obtained in the integration of an expansion A2 terms correct and '+ c ' (A1F two terms in x correct ft on expansion provided integrating x to a negative power)
(d)	$\int_{1}^{3} \left(1 + \frac{3}{x^{2}}\right)^{2} dx = \left[x - \frac{6}{x} - \frac{3}{x^{3}}\right]_{1}^{3}$ $= \left(3 - \frac{6}{3} - \frac{3}{27}\right) - (1 - 6 - 3)$	M1		Dealing correctly with limits; $F(3) - F(1)$ (must have attempted integration to get F)
	=8-9	A1	2	CSO; OE provided value is exact , eg $\frac{80}{9}$, $\frac{240}{27}$;
				15 w dec value after exact value seen NMS scores 0/2
	Total		8	
				•

0	Solution	Marks	Total	Comments
<u> </u>	24 = 16k + 12	M1		Condone with 0.75 (OE) subst for <i>k</i>
	$k = 12 \div 16 = 0.75$	A1	2	AG; OE fraction; if verification must
				explicitly state the conclusion
(b)	$u_3 = 30$	B1		
	$u_4 = 34.5$	B1F	2	ft on $0.75 \times \text{cand's } u_3 + 12$
(c)(i)	L = 0.75L + 12	M1	1	Replacing u_{n+1} and u_n by L
(ii)	$L = \frac{12}{1-k} = \frac{12}{1-0.75}$	m1		PI, but previous M must be scored
	L = 48	A1	2	SC: (c)(i) incorrect and then in (c)(ii) L = 0.75L + 12 leading to $L = 48$ scores
				B2
	Tota		7	
4(a)	h=2	BI		PI
	$g(x) = \sqrt{x^3 + 1}$			
	$I \approx h/2\{\ldots\}$			OE summing of areas of the 'trapezia'
	$\{\ldots\} = g(0) + g(6) + 2[g(2) + g(4)]$	M1		Can award even if MR expression for $g(x)$ but must be using from 0 to 6
	$\{ \} = 1 + \sqrt{217} + 2(3 + \sqrt{65})$	A1		OF Accent 2dn evidence for surds
	1 + 14.73 + 2(3 + 8.06)			
	$(I \approx) 37.8554 = 37.86$ (to 4sf)	A1	4	Must be 37.86
(b)	$f(x) = \sqrt{(2x)^3 + 1} = \sqrt{8x^3 + 1}$	M1		$\sqrt{kx^3 + 1}$, $k \neq 1$ or 0 or $f(x) = g(2x)$
		A1	2	Either form acceptable
	Total		6	

MPC2 (cont)			
Q	Solution	Marks	Total	Comments
5(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{45}{2}x^{\frac{1}{2}} - \frac{5}{2}x^{\frac{3}{2}}$	M1 A2,1,0	3	One power correctly obtained A1 for each term on the RHS coeffs simplified
(b)	$\frac{45}{2}x^{\frac{1}{2}} - \frac{5}{2}x^{\frac{3}{2}} = 0$	M1		cand's (a) = 0
	$\frac{5}{2}x^{\frac{1}{2}}(9-x) = 0$	m1		Must be solving eqn of form $ax^m + bx^n = 0$, <i>m</i> and <i>n</i> non-zero, with at least one of <i>m</i> and <i>n</i> non-integer and reaching a stage from which the non-zero value of <i>x</i> can be stated PI. Must deal with powers of <i>x</i> correctly and any squaring of kx^p terms or expressions must be correct
	At M , $x = 9$	A1		of expressions must be context.
	$y_M = 162$	A1	4	M1 must be scored, else 0/4
(c)	At $P(1, 14), \ \frac{dy}{dx} = \frac{45}{2} - \frac{5}{2} = 20$	M1		Attempt to find $y'(1)$
	Tangent at <i>P</i> : $y - 14 = m(x - 1)$	ml		m = cand's value of y'(1)
	y - 14 = 20x - 20; y = 20x - 6	A1	3	CSO; AG
(d)	Tangent at <i>M</i> : $y = 162$	B1F		ft $y = \text{cand's } y_M$
	At R, $162 = 20x - 6$; $x = 8.4$	M1		Solving cand's numerical $y_M = 20x - 6$ to find a value for x
	Distance $RM = x_M - x_R = 9 - 8.4 = 0.6$	A1F	3	ft on coordinates of M
	Total		13	
6	{Area of sector =} $\frac{1}{2}r^2\theta$	M1		$\frac{1}{2}r^2\theta$ seen or used for the area; PI
	$r^2 = \frac{33.75}{\frac{1}{2}\theta} (= 56.25)$	m1		Correct rearrangement to $r^2 = \dots$ or $r = \dots$
	<i>r</i> = 7.5	A1		PI eg by a correct arc length
	${\rm Arc} = r\theta$	M1		$r\theta$ seen or used for the arc length
	=9	A1F		ft on $1.2 \times \text{cand's } r$ provided the two M's
				$3.2 \times \text{cand's } r$ for perimeter
	{Perimeter =} 24 {cm}	A1	6	CAO
	Total		6	

MPC2 (cont		1		
Q	Solution	Marks	Total	Comments
7(a)(i)	$ar = 375; ar^4 = 81$	B1		For either OE or PI by next line
	$\Rightarrow 375r^3 = 81$	M1		Elimination of <i>a</i> OE
	$r^3 = \frac{81}{375} = \frac{27}{125} = 0.216 \implies r = 0.6$	A1	3	CSO AG Full valid completion SC: Clear explicit verification, with statement max B1 out of 3. (If considers uniqueness then 3 is possible)
(ii)	0.6a = 375 a = 625	M1 A1	2	OE; PI
(b)	$\frac{a}{1-r} = \frac{a}{1-0.6}$	M1		$\left \frac{a}{1-r} \right $ used with value of $r < 1$
	$S_{\infty} = \frac{625}{0.4} = 1562.5$	A1F	2	ft on cand's value for a ie $2.5 \times a$
(c)	$\sum_{n=6}^{\infty} u_n = \sum_{n=1}^{\infty} u_n - \sum_{n=1}^{5} u_n$	M1		
	$u_3 = 0.6 u_2 (= 225)$ and $u_4 = 0.6^2 u_2 (= 135)$	M1		Valid method to either find u_3 and u_4 or
				use of $\{S_n =\}\frac{a(1-r^n)}{1-r}$ for either $n = 5$ or $n = 6$
	$\sum_{n=1}^{5} u_n = 625 + 375 + 225 + 135 + 81 \ (= 1441)$	A1		
	$\sum_{n=6}^{\infty} u_n = 1562.5 - 1441 = 121.5$	A1	4	
	Alternative for (c):			
	Recognise that the sum to infinity with first term u_6 is required	(M1)		
	Valid method to find $u_6 \ (= 0.6 u_5)$	(M1)		
	$\sum_{n=6}^{\infty} u_n = \frac{81 \times 0.6}{1 - 0.6}$	(A1)		
	= 121.5	(A1)		
	Total		11	

Q	Solution	Ν	Marks	Total	Comments
8(a)	$\frac{\sin\theta}{\cos\theta} - \frac{\cos\theta}{\cos\theta} = 4$				
	$\tan\theta - 1 = 4$		M1		$\tan \theta = \frac{\sin \theta}{\cos \theta}$ stated or used
	$\tan\theta=5$		A1	2	AG; CSO
(b)(i)	$2\cos^2 x - \sin x = 1$				
	$2(1-\sin^2 x) - \sin x = 1$		M1		$\mathbf{Use} \text{ of } \cos^2 x + \sin^2 x = 1$
	$2 - 2\sin^2 x - \sin x = 1$				
	$\Rightarrow 2\sin^2 x + \sin x - 1 = 0$		A1	2	AG; CSO
(ii)	$(\sin x + 1)(2\sin x - 1) = 0$		M1		Factorisation or use of formula; PI by both correct values for sin <i>x</i>
	$\sin x = -1, \sin x = 0.5$		A1		Need both
	$(\sin x = -1)$ so $x = 270^{\circ}$		B1		
	$(\sin x = 0.5)$ so $x = 30^{\circ}$		A1		30° as the only acute angle
	$x = 180 - 30 = 150^{\circ}$		B1F	5	ft for 2^{nd} angle from c's sinx = non-integer
					Ignore values outside interval 0°–360° but extras inside interval lose the corresp. B, A or B1F mark. If using rads, accepting either equivalent exact vals (in terms of pi) or 2dp values instead of degrees, penalise max of 1 mark from any of the final three marks (B1A1B1F) awarded NMS: 270° (B1): 30°. 150° (B1) [max 2/5]
		Total		0	

MPC2 (cont	t)			
Q	Solution	Marks	Total	Comments
9(a)(i)	$\sqrt{125} = \sqrt{25 \times 5} = 5\sqrt{5}$	M1		OE eg $\sqrt{125} = \sqrt{5^3}$ or $5^{1.5}$ seen
	$5^p = \sqrt{125} \Rightarrow p = 1.5$	A1	2	Correct value of <i>p</i> must be explicitly stated
	Alternative for (a)(i):			
	$p\log 5 = \frac{1}{2}\log 125$	(M1)		OE eg $p \log 5 = \log 11.18$ or eg $p = \log_5 \sqrt{125}$
	$p\log 5 = \frac{3}{2}\log 5 \Longrightarrow p = \frac{3}{2}$	(A1)		Correct value of <i>p</i> must be explicitly stated
(ii)	$5^{2x} = \sqrt{125} = 5^p \Longrightarrow x = 0.5 p = 0.75$	B1F	1	Must be $0.5 \times c$'s value of p
				SC: $x = 0.75$ with c's ans (a)(i) $5^{1.5}$ scores B1F
(b)	$3^{2x-1} = 0.05$ (2x-1) log 3 = log 0.05	M1		Take logs of both sides and use 3^{rd} law of logs. PI eg by $2x - 1 = \log_3 0.05$ seen
	$x = \frac{\log_{10} 0.05}{2\log_{10} 3} + \frac{1}{2}$	m1		Correct rearrangement to $x = \dots$ PI
	= -0.8634(165) = -0.8634 to 4dp	A1	3	Condone > 4dp. Must see logs clearly used in solution, so NMS scores 0/3
(c)	$\log_{a} x = 2(\log_{a} 3 + \log_{a} 2) - 1$			
	$= 2\log_a(3 \times 2) - 1$	M1		A valid law of logs used
	$= \log_a(6^2) - 1$	M1		Another valid law of logs used
	$= \log_a 36 - \log_a a$	B1		$\log_a a = 1$ quoted or used
				or $\log_a \frac{x}{k} = -1 \Longrightarrow \frac{x}{k} = a^{-1}$ OE
	$\log_a x = \log_a \left(\frac{36}{a}\right) \Rightarrow x = \frac{36}{a}$	A1	4	CSO Must be $x = \frac{36}{a}$ or $x = 36a^{-1}$
	Total		10	
	TOTAL		75	

Mathematics 6360

MPC2 Pure Core 2

Mark Scheme

2010 examination - January series

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is t	for method and a	accuracy			
E	mark is for explanation					
$\sqrt{10}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	С	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MPC2		1		
Q	Solution	Marks	Total	Comments
1(a)(i)	{Area of sector =} $\frac{1}{2}r^2\theta$	M1		Stated or explicitly used
	$=\frac{1}{2} \times 15^2 \times 1.2 = 135 \ (\text{cm}^2)$	A1	2	AG Must see some substitution
(ii)	$\{\Delta rc -\} r\theta$	M1		Ы
(11)	= 18 (cm)	A1	2	
(b)	PB = 5 (cm)	B1		Accept even if only on a diagram or within an expression for the perimeter
	${AP^{2} =} 15^{2} + 10^{2} - 2 \times 15 \times 10\cos 1.2$	M1		RHS of cosine rule used
	$= 325 - 300\cos 1.2 = 216.2926$	m1		Correct order of evaluation
	<i>AP</i> = 14.7(068)	A1	_	PI eg within an expression for perimeter
	Perimeter = $5 + 18 + 14.7 = 37.7$ (cm)	A1	5	3sf or better
	Total		9	
2(a)	$\sqrt{x^5} = x^{\frac{5}{2}}$	B1	1	Accept $k = 2.5$
(b)	$\int \left(7\sqrt{x^5} - 4\right) dx = \frac{7}{3.5}x^{3.5} - 4x \ (+c)$	M1 A1F		Index 'k' raised by 1 in integrating x^k 1 st term correct follow through on non- integer k
		B1	3	For $-4x$ as integral of -4
(c)	$y = 2x^{3.5} - 4x + c \qquad (*)$	B1F		y = c's answer to (b) with '+ c ' (' $y =$ ' PI by next line)
	When $x = 1$, $y = 3 \implies 3 = 2 - 4 + c$	M1		Subst. (1, 3) in attempt to find constant of integration
	$y = 2x^{3.5} - 4x + 5$	A1	3	Accept $c = 5$ after correct eqn * which must include 'y ='
	Total		7	
3 (a)(i)	(x =) 1	B1	1	CAO
(ii)	(x =) 3	B1	1	CAO
(b)	$\log_a n^2 = \log_a 18(n-4)$	M1 M1		A valid law of logs applied to correct logs A second valid law of logs applied to correct logs
	$n^2 - 18n + 72 = 0$	A1		ACF of these terms eg $n^2 - 18n = -72$
	(n-6)(n-12) = 0	m1		Valid method to solve quadratic, dep on both the previous Ms
	n = 6, n = 12	A1	5	Both values required SC NMS max (out of 5) B3 for both 6 and 12 without uniqueness considered; max B1 for either 6 or 12 only
	Total		7	

MPC2 (cont)			
Q	Solution	Marks	Total	Comments
4 (a)	$\{S_{31} = \} \frac{31}{2} [2a + (31 - 1)d]$	M1		
	31(a+15d) = 310	m1		Forming eqn and eliminating fraction or bracket
	a + 15d = 310/31; a + 15d = 10	A1	3	AG Completion to printed answer
(b)	a + (21 - 1)d = 2[a + (16 - 1)d]	M1		a + (n-1)d used for at least one term
	$\Rightarrow a = -10d; \Rightarrow -10d + 15d = 10$	m1		Solving $a + 15d = 10$ simultaneously with an eqn in a and d obtained from a+20d = k[a+15d] with $k=2$ or with $k=1/2$
	<i>d</i> = 2	A1	3	
(c)	$u_1 = a = -20$	B1F		ft on c's value for d in $a + 15d = 10$ or in another correct (dep on m1) equation in a and $dThe value for a must appear within c'ssoln for (c)$
	$\sum_{n=1}^{k} u_n = S_k = \frac{k}{2} [2a + (k-1)d]$	M1		Condone n for k in M1 and A1F lines provided n replaced by k at a later stage
	$\frac{k}{2} \left[-40 + 2k - 2 \right] = 0$	A1F		'= 0' can be implied by later line; ft on c's non-zero values for a and d
	<i>k</i> = 21	A1	4	Condone presence of $k = 0$ SC NMS $k = 21$ and with $d = 2$ found earlier award B2. If $k = 21$ but never see d = 2, award $0/4$
	Total		10	

IPC2 (cont				1
Q	Solution	Marks	Total	Comments
5(a)	$\frac{1}{x^3} = x^{-3}$	B1		PI by its correct derivative
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -3x^{-4} + 48$	M1		A power decreased by 1; could be the +48 or the ft after B0
		A1	3	
(b)	$-3x^{-4} + 48 = 0$	M1		c's answer to (a) equated to 0
	$x^{-4} = 16$	A1F		To $x^{p} = q$ but only ft on eqns of the form $ax^{2k} + 48 = 0$, where <i>a</i> and <i>k</i> are negative integers
	$x = \pm \frac{1}{2}$	A1		
	Eqns of tangents: $y = 32$ and $y = -32$	A1F	4	Only ft if answer is of the form $y = \pm k$
(c)	When $x = 1$, $\frac{dy}{dx} = -3 + 48 = 45$	M1		Attempt to find value of $\frac{dy}{dx}$ at $x = 1$
	Gradient of normal at (1, 49) is $-\frac{1}{45}$	m1		Correct use of $m \times m' = -1$ with c's value of $\frac{dy}{dx}$ when $x = 1$
	Normal at (1, 49): $y - 49 = -\frac{1}{45}(x - 1)$	A1	3	CSO. Apply ISW after ACF; accept 49.02 or better in place of $49\frac{1}{45}$
	Total		10	

viru2 (con			m	a c
Q	Solution	Marks	Total	Comments
6(a)	y ▲	B1		Shape with some indication of asymptotic behaviour in 2^{nd} quadrant below pt of intersection with <i>y</i> -axis
		B1	2	Only intersection is with y-axis at (0, 1) stated/indicated (accept 1 on y-axis as equivalent)
(b)(i)	$h = 0.5$ $f(x) = 2^x$	B1		PI
	$I \approx h/2 \{ \dots \} \{ \dots \} = f(0) + f(2) + 2[f(0.5) + f(1) + f(1.5)]$	M1		OE summing of areas of the 4 'trapezia'
	$\{\dots\} = 1 + 4 + 2(\sqrt{2} + 2 + \sqrt{8}) \\ = 5 + 2 \times 6.2426 = 17.485$	A1		OE Accept 2dp (rounded or truncated) as evidence for surds
	$(I \approx)$ 4.3713 = 4.37 (to 3sf)	A1	4	CAO Must be 4.37 SC for those who use 5 strips, max possible is B0M1A1A0
(ii)	Increase the number of ordinates	E1	1	OE
(c)	Translation;	B1;		Accept 'translat' as equivalent [T or Tr is NOT sufficient]
	$\begin{bmatrix} -7\\3 \end{bmatrix}$	B1;B1	3	B1 for each component of the vector. Condone if the equiv 2 vectors are given. Accept full equivalent to vector(s) in words provided linked to 'translation/ move/shift' and correct directions. (No marks if different transformations)
(d)	$8 = 2^k + 3 \implies 2^k = 5$	M1		Correct subst. and an attempted
				rearrangement to $2^k = N$. PI by $k = \frac{\log 3}{\log 2}$
	$k = \log_2 5$	A1	2	Accept $m = 2, n = 5$
	Total		12	

MPC2 (cont)							
Q	Solution	Marks	Total	Comments			
7(a)	$ (1+2x)^{7} = 1 + {\binom{7}{1}} (2x)^{1} + {\binom{7}{2}} (2x)^{2} + {\binom{7}{3}} (2x)^{3} + $	M1		Any valid method. PI by a correct value for either a or b or c			
	$= 1 + 14x + 84x^{2} + 280x^{3} + \dots$ {a = 14, b = 84, c = 280}	A1 × 3	4	A1 for each of a, b, c SC $a = 7, b = 21, c = 35$ either explicitly or within expn (M1A0)			
(b)	$\left(1 - \frac{1}{2}x\right)^2 = 1 - x + \frac{1}{4}x^2$	B1		Correct expansion stated explicitly or used later			
	x^{3} terms from expn of $\left(1-\frac{1}{2}x\right)^{2}\left(1+2x\right)^{7}$ are cx^{3} and $-x(bx^{2})$ and $\frac{1}{4}x^{2}(ax)$	M1		Any one of the three, or ft on c's non-zero values for a, b or c . Must be from products of terms using c's two expansions			
	$cx^3 - x(bx^2) + \frac{1}{4}x^2(ax)$	A1F		ft c's two expansions provided all three combinations of terms are present			
	Coefficient of x^3 is $c - b + 0.25a = 199.5$	A1	4	OE eg 399/2 Condone $199.5x^3$			
	Total		8				
<u> </u>	Solution	Marks	Total	Comments			
---------------	---	-----------	-------	--			
<u> </u>	$r \pm 52^{\circ} - (22^{\circ}) = 180^{\circ} \pm 22^{\circ} \cdot 360^{\circ} \pm 22^{\circ}$	M1·M1	Iotai	r + 52 = 180 + AWRT 22, 360 + AWRT 22 OE			
0(a)	x + 52 = (22), 160 + 22, 500 + 22 ($x - 180 + 22 - 52; x - 360 + 22 - 52$)	1011,1011		(max of M1 if extras in range)			
	(x - 100 + 22 - 52, x - 500 + 22 - 52)			LHS could be any letter but not x unless			
				final answer shows recovery			
				Ms can be PI			
	$x = 150^{\circ}$ 330°	A1	3	Both CAO with no extras in $0^{\circ} \le x \le 360^{\circ}$			
	<i>x</i> 100 , 000		5	Ignore anything outside $0^{\circ} < x < 360^{\circ}$			
	$8 \sin\theta 8$			sin A			
(b)(i)	$3 \tan \theta = \frac{\theta}{\sin \theta} \Rightarrow 3 \frac{\sin \theta}{\cos \theta} = \frac{\theta}{\sin \theta}$	M1		$\tan \theta = \frac{\sin \theta}{\cos \theta}$ used/seen			
	$\sin\theta$ $\cos\theta$ $\sin\theta$			COSO			
	$\frac{3(1-\cos\theta)}{2}=8$	M1		$\sin^2 \theta = 1 - \cos^2 \theta$ used			
	$\cos \theta$						
	$\Rightarrow 3 - 3\cos^2 \theta = 8\cos \theta$						
	$\Rightarrow 3\cos^2\theta + 8\cos\theta - 3 = 0$	A1	3	CSO AG Completion			
(ii)	$(3\cos\theta - 1)(\cos\theta + 3) = 0$	M1		Any valid method to solve the quadratic			
	$\cos \theta = \frac{1}{2}$	Δ1	2	CSO Must only be the one value			
	$\frac{1}{3}$		2	eso must only be the one value			
(:::)	2002 r - 1	M1		Using (ii) OE to get or use $\cos 2x = k$			
(111)	$\cos 2x = \frac{1}{3}$	IVI I		where $-1 \le k \le 1$			
	(2x =) 70.528	B1		Award for $\cos^{-1}(1/3)$ = value from 70 to			
				71 inclusive, even if θ used. PI			
	$2x = 360^{\circ} - 70.528 (= 289.47)$	m1		$2x = 360 - \cos^{-1}(c's k)$ OE			
				No extras inside the range			
	$x = 35^{\circ}$, 145° (to the nearest degree)	A1	4	Both, condoning greater accuracy, with			
				no extras in $0^{\circ} \le x \le 180^{\circ}$			
				Ignore anything outside $0^{\circ} \le x \le 180^{\circ}$			
				SC for (b)(iii) only when c's answer for			
				(b)(ii) is $\cos\theta = -\frac{1}{2}$:			
				3			
				max mark M1B1 (val 70-71 or val			
				109-110 inclusive) m1A0			
	Total	ļ	12				
	TOTAL	1	75				

Version 1.0

General Certificate of Education June 2010

Mathematics

MPC2

Pure Core 2

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
E	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
-x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MPC2				
Q	Solution	Marks	Total	Comments
1(a)	{Area of sector =} $\frac{1}{2}r^2\theta$	M1		$\frac{1}{2}r^2\theta$ seen or used for the area
	$= \frac{1}{2} \times 8^2 \times 1.4 = 44.8 \{m^2\}$	A1	2	Must be exact, not rounded to
(b)(i)	${Arc =} r\theta$	M1		$r\theta$ seen or used for the arc length
	= 11.2	A1		PI Condone AWRT 11.2
	Perimeter of sector = 16+11.2 = 27.2 {m}	A1F	3	Ft on c's evaluation of 8×1.4
(ii)	$27.2 = 2\pi x$	M1		[c's numerical answer for (b)(i)] = $2\pi x$
	$x = \frac{27.2}{2\pi} = 4.329 = 4.33$ to 3sf	A1	2	Condone >3sf
	Total		7	
2(a)		R1		$OE \approx 34/5$
2(a)	$u_2 = 6.8$	DI	_	OE eg 54/5
	$u_3 = 8.72$	B1F	2	Ft on 6+0.4×c's u_2
(b)	L = 6 + 0.4L	M1		Replacing u_{n+1} and u_n by L
	$L = \frac{6}{1 - 0.4}$	m1		PI provided M scored
	L = 10	A1	3	Must form an equation in L otherwise $0/3$
	Total		5	

MPC2 (cont	.)			
Q	Solution	Marks	Total	Comments
3 (a)	6 15	M1		Sine rule OE PI
	$\frac{1}{\sin\theta} = \frac{1}{\sin 150}$			
	$\sin\theta = \frac{6\times\sin150}{15} \qquad \{=0.2\}$	m1		Rearrangement
	$\theta = 11.53(6) = 11.5^{\circ} \{ \text{to nearest } 0.1^{\circ} \}$	A1	3	AG Must see at least 4sf value or an exact value for $\sin \theta$ (0.2, 3/15, OE) before seeing the printed value 11.5
(b)	Angle $B = 180 - (150 + \theta) = 18.5 \{\text{to 3sf}\}$	B1		Award for B = any value between 18 and19 inclusive[18.463041]
	Area = $\frac{1}{2} \times 6 \times 15 \sin B$	M1		
	$= 14.3 \{ cm^2 \}$ to 3sf	A1	3	Accept a value 14.2 to 14.3 inclusive Note: For methods involving <i>AC</i> , for the
				M1 need both a correct method to find <i>AC</i> and a correct area formula
	Total		6	

MPC2 (cont	t)			
Q	Solution	Marks	Total	Comments
4(a)	p = -3; q = 3	B1;B1	2	Accept even if just embedded in the expansion
(b)(i)	$\int \left(1 - \frac{1}{x^2}\right)^3 dx =$ $\int \left(1 - 3x^{-2} + 3x^{-4} - x^{-6}\right) dx$ $= x + 3x^{-1} - x^{-3} + \frac{1}{5}x^{-5} \{+c\}$	M1 m1 A2F,1F	4	Uses (a) with indication of integration and indication of $\frac{1}{x^n} = x^{-n}$ PI At least three powers of <i>x</i> correctly obtained Ft on c's non-zero integers <i>p</i> and <i>q</i> . A1F if 3 of the 4 terms are correct (ft) or if all correct (ft) but left unsimplified Condone missing + <i>c</i> .
(ii)	$\int_{\frac{1}{2}}^{1} \left(1 - \frac{1}{x^2}\right)^3 dx = \left(1 + 3 - 1 + \frac{1}{5}\right) - \left(\frac{1}{2} + 6 - 8 + \frac{32}{5}\right)$ 17	M1		Attempting to calculate F(1)–F(1/2) where F is c's answer to part (b)(i) provided F is not the integrand or the c's equivalent of the integrand $(1-\frac{1}{x^2})^3$.
	$= -\frac{10}{10}$	A1	2	OE exact answer eg -1.7
	Total		8	

MPC2 (cont	t)			
Q	Solution	Marks	Total	Comments
5(a)(i)	$\{S_{\infty} =\} \frac{a}{1-r} = \frac{10}{1-r}$	M1		$\frac{a}{1-r}$ used
	$\frac{10}{1-r} = 50 \text{ so } 1 - r = \frac{10}{50} \implies r = \frac{4}{5}$	A1	2	AG Condone verification with the correct final statement but be convinced.
(ii)	2^{nd} term = ar = 8	M1 A1	2	<i>ar</i> stated or used for the 2^{nd} term. PI by ans '8'
(b)(i)	$4^{\text{th}} \text{ term} = a + 3d; 8^{\text{th}} \text{ term} = a + 7d$ a + 3d = 10, a + 7d = 8	M1 A1F		Uses $a + (n - 1)d$ correctly at least once Both eqns. correct ft on c's (a)(ii) OE eg 8 = 10 + 4d
	$\Rightarrow 4d = -2 \Rightarrow d = -0.5$	A1	3	OE fraction.
(ii)	a + 3(-0.5) = 10	M1		An appreciation that a is required in (b)(ii) and a valid method to find a anywhere or PI if $a = 11.5$ seen/used
	$\Rightarrow a = 11.5$	A1F		Ft on c's non-zero value for d ie using $a = 10-3d$ or $a = c$'s 8 -7d. [c's 8 is candidate's answer to (a)(ii)]
	$\sum_{n=1}^{40} u_n = S_{40} = \frac{40}{2} [2a + (40 - 1)d]$ = 70	M1 A1	4	$\frac{40}{2} [2a + (40 - 1)d]$ OE
<u> </u>	Total		11	
L	Itua		**	

MPC2 (cont)				
Q	Solution	Marks	Total	Comments
6(a)	$\sqrt{x} = x^{\frac{1}{2}}$	B1		PI
(b)(i)	$\frac{x^3 + \sqrt{x}}{x} = \frac{x^3}{x} + \frac{\sqrt{x}}{x} = x^2 + x^{-\frac{1}{2}}$	B1;B1	3	Accept $p=2$; $q=-\frac{1}{2}$
(0)(1)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - \frac{1}{2}x^{-\frac{3}{2}}$	M1 A1	2	Reduces both powers by 1 ACF
(ii)	When $x = 1$, $y = 2$	B1		PI if not stated explicitly eg the '2' may appear in the correct posn. in later eqn.
	When $x = 1$, $\frac{dy}{dx} = 2 - \frac{1}{2} = \frac{3}{2}$	M1		Attempt to find $\frac{dy}{dx}$ when $x = 1$ PI
	Gradient of normal $= -\frac{2}{3}$	m1		-1/(c's value of dy/dx when x = 1) either stated as the gradient of the normal or used as the gradient in the equation of the normal
	Equation of normal: $y - 2 = -\frac{2}{3}(x - 1)$	A1F	4	Only ft on c's $\frac{dy}{dx}$ in part (b)(i).
(c)(i)	$\frac{d^2 y}{dx^2} = 2 + \frac{3}{4}x^{-\frac{5}{2}}$	M1 A1F	2	ACftF Reduces both powers by 1. Ft on (b)(i) provided at least one power to be differentiated is both negative and fractional
(ii)	(Since x>0,) $\frac{d^2 y}{dx^2} > 0$			
	For a maximum point $\frac{d^2 y}{dx^2}$ is not			$d^2 y$
	positive so C has no maximum points	E2,1,0	2	E1 for attempt to find the sign of $\frac{d^2 y}{dx^2}$
				; either in general terms or at the pt(s) where c's $dy/dx = 0$ for the remaining E mark a correct
				justification for why $\frac{d^2 y}{dx^2} > 0$ and also
				a full correct concluding statement must be made.
	Total		13	

MPC2 (cont)			
Q	Solution	Marks	Total	Comments
7(a)	y 1 $\frac{\pi}{2}$ $\frac{3\pi}{2}$ x	B1 B1	2	Correct shape meeting positive <i>y</i> -axis and only one oscillation within interval 0 to 2π The three correct intercepts stated; Accept 1.57 for $\pi/2$ and 4.71 for $3\pi/2$ but must be evidence of radian vals. not just degrees Ignore any parts of the graph clearly indicated as outside the given interval
(b)(i)	$1 - \cos^2 \theta = \cos \theta (2 - \cos \theta)$	M1		$\cos^2 \theta + \sin^2 \theta = 1$ used
	$1 = 2\cos\theta \implies \cos\theta = \frac{1}{2}$	A1	2	CSO AG Completion
(ii)	$\sin^2 2x = \cos 2x(2 - \cos 2x)$	M1		Uses (b)(i)
	$\Rightarrow \cos 2x = \frac{1}{2}$	IVI I		
	$\{2x=\}$ $\cos^{-1}\left(\frac{1}{2}\right) = 1.04(7)$	m1		PI Accept 1.05, $\frac{\pi}{3}$; Condone 60°
	x = 0.524, 2.62 x = 0.523(59), 2.61(7)	A2,1,0	4	Condone >3sf; Condone $x = 0.525$, 2.62 Accept truncated '3sf' vals $x = 0.523$, 2.61 Deduct 1 mark for each extra (>2 solns) in the given interval from A marks to a min of A0. Ignore any solns outside the given interval 0 to π . Accept, as equivalent, the exact answers $x = \frac{\pi}{6}$ and $x = \frac{5\pi}{6}$ when seen and apply ISW if 'errors' converting these to decimals. If not A2 then A1 if • one soln correct. • 30°, 150° ie solns left in degrees • AWRT 0.52, 2.6 ie correct vals to only 2sf.
	Total		8	Must see an indication that (b)(i) has been used otherwise $0/4$ so just stating the two correct answers with nothing else scores $0/4$.

MPC2 (cont				~
Q	Solution	Marks	Total	Comments
8(a)	(y =) 1	B1	1	
(b)	h = 0.2	B1		PI
	$f(x) = 2^{4x}$			
	$I \approx h/2\{\ldots\}$			
	$\{.\}=f(0)+f(1)+2[f(0.2)+f(0.4)+f(0.6$			OE summing of areas of the
	(0.8)]	M1		'trapezia'
	$\{.\} = 1 + 16 + 2(2^{0.8} + 2^{1.6} + 2^{2.4} + 2^{3.2})$			OE Accept 2dp rounded or truncated
	=1+16+2(1.741+3.031+5.278+9.1)	A1		evidence
	895) = [17+2×19.24]			
	I = 5.55 (to2dp)	A1	4	Must be 5.55
(c)	Stretch(I) in y-direction(II) scale	M1		Need (I) and either (II) or (III)
		A1	2	Need (I) and (II) and (III)
	factor $\frac{-(111)}{8}$			
	ALTn : Translation with an indication			Combination of different
	that the translation is in the <i>x</i> -direction			transformations scores $0/2$
	(B1)			
	[3]			
	$\left \frac{1}{4}\right $ (B1)			
(d)	$(x_{-1}) = 1$			1 - 1 - 1
	$g(x) = 2^{+(x-1)} - \frac{1}{2}$			B1 for either $2^{4(\alpha+1)} - \frac{1}{2}$ or for
	_			
		B2,1,0		$2^{+(x-1)} + \frac{1}{2}$ or for $2^{+x-1} - \frac{1}{2}$
	At $Q = 0 \implies 2^{4(x-1)} = 2^{-1}$			Reaches a stage from which linear eqn can be
	$\operatorname{Int} \mathfrak{Q}, y = 0 \Longrightarrow \mathfrak{L} = 2$	M1		stated directly eg an alternative stage is
				$4(x-1)\log 2 = -\log 2$
	$\Rightarrow 4x - 4 = -1 \Rightarrow x = 0.75$	Al	4	NMS mark as 4 or 0
(e)(1)	$\log_a k = \log_a 2^3 + \log_a 5 - \log_a 4$	MI		One law of logs used
	$\log_a k = \log_a (2^3 \times 5) - \log_a 4$			A second law of logs used; could be
		141		$\log_{10} k = \log_{10} 2^3 + \log_{10} (\frac{5}{2})$
		MI		
	$\log k - \log (\frac{2^3 \times 5}{5}) - \log 10 \Longrightarrow k - 1$		2	
	$\log_a \kappa = \log_a (-4) = \log_a 10 \implies \kappa = 1$	AI	3	CSO AG
(ii)	$2^{4x-3} = \frac{5}{2}$ so			Equate y's, take logs (to any base) of
	$\frac{2}{4}$ = $\frac{1}{4}$ so			both sides <u>and</u> apply 3 rd law of logs.
	$(4x-3)\log 2 = \log \frac{5}{2}$	М1		Alth $4x \log 2 = \log \left(\frac{5}{2} \times 2^3\right)$
	$(4x - 5)\log_{10} 2 = \log_{10} 4$	IVII		$\left[1 + 1 + 1 + 1 + 2 + 2 + 1 + 2 + 2 + 2 + $
	$2\log_{10}(2+\log_{10}(5))$			Rearrange correctly to $x = \dots$
	$3 \log_{10} 2 + \log_{10} \left(\frac{-}{4} \right)$			Altn $4x \log 2 = \log 10$
	$x = \frac{1}{4\log 2}$			In both cases, log term(s) must have
	10810 2			same base and expressions must be in
		m1		an exact form, ie not approx. dec. vals
	$r = \log_{10} 10$ $r = 1$			CSO AG Must be clear evidence that
	$x = \frac{1}{4\log_{10} 2}$ so $x = \frac{1}{4\log_{10} 2}$	A1	3	base 10 is used, also be convinced
	Total		17	
	TOTAL		75	

Version1.0

General Certificate of Education (A-level) January 2011

Mathematics

MPC2

(Specification 6360)

Pure Core 2

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
$\sqrt{10}$ or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MPC2				
Q	Solution	Marks	Total	Comments
1 (a)	$\operatorname{Arc} = r\theta$	M1		arc = $r\theta$ seen or used. PI by correct θ
	$4 = 5\theta \Longrightarrow \theta = \frac{4}{5} = 0.8$	A1	2	$(\theta =) \frac{4}{5} \text{ OE}$
(b)	Area of sector = $\frac{1}{2}r^2\theta$	M1		Area = $\frac{1}{2}r^2\theta$ seen or used within (b). PI
	$=\frac{1}{2}\times5^2\times0.8=10$ (cm ²)	A1F	2	Ft on 12.5×c's exact value for θ in part (a) provided $5 \le c$'s area ≤ 20
	Total		4	
2(a)(i)	(<i>p</i> =) 3	B1	1	
(ii)	(<i>q</i> =) –3	B1F	1	If not correct, ft on $-p$
(iii)	$(r =) \frac{1}{2}$	B1	1	OE
(b)	$2^{\frac{1}{2}} \times 2^{x} = 2^{-3} \Longrightarrow 2^{\frac{1}{2}+x} = 2^{-3}$	M1		Using a law of indices or logs correctly to combine at least two of the powers of 2 PI
	$\Rightarrow x = -3\frac{1}{2}$	A1F	2	If not correct, ft on $x = q - r$ provided method shown
	Total		5	
3 (a)	$10^2 = 8^2 + 5^2 - 2 \times 8 \times 5 \cos \theta$	M1		Use of the cosine rule PI by next line
	$\cos\theta = \frac{8^2 + 5^2 - 10^2}{2 \times 8 \times 5} (= -\frac{11}{80} = -0.1375)$	m1		Rearrangement
	$\theta = 97.90(32) = 97.9^{\circ}$ (to nearest 0.1°)	A1	3	CSO (Must see either exact value for $\cos\theta$ or at least 4sf value for either $\cos\theta$ or θ before the printed answer 97.9°) AG
(b)(i)	Area = $\frac{1}{2} \times 8 \times 5 \sin \theta$	M1		OE
	$= 19.810 = 19.8 (cm^2) to 3sf$	A1	2	Condone > 3sf
(ii)	Area of triangle = $0.5 \times BC \times AD$	M1		Or valid method to find sin <i>B</i> or sin <i>C</i> or <i>B</i> or <i>C</i>
	$AD = [Ans.(\mathbf{b})(\mathbf{i})] \div [0.5 \times BC]$	m1		Or $AD = 5 \sin B$; or $AD = 8 \sin C$ OE
	$AD = \frac{15.810.1}{5} = 3.962 = 3.96$ (cm) to 3sf	A1	3	Condone > 3sf
	Total		8	

MPC2 (cont)				
Q	Solution	Marks	Total	Comments
4(a)	h = 0.5	B1		PI
	$f(x) = \sqrt{27x^3 + 4}$			
	$I \approx h/2\{\ldots\}$			
	$\{\dots\} = f(0) + f(1.5) + 2[f(0.5) + f(1)]$	M1		OE summing of areas of the 'trapezia'
		A 1		
	$\{\dots\} = \sqrt{4} + \sqrt{95.125} + 2(\sqrt{1.5}/5 + \sqrt{51})$ $= 2\pm9.7532 \pm 2(2.7156 \pm 5.5677)$	AI		OE Accept 2dp rounded or truncated as
	– 2+7.7552 +2(2.7150+5.5077)			evidence for surds
	$(I \approx) 0.25 \times 28.32012 = 7.08 \text{ (to 3sf)}$	A1	4	Must be 7.08
(b)	$(27(1))^3 + 4 = \sqrt{x^3 + 4}$	MI		Any form which simplifies to $\sqrt{kx^3 + 4}$,
(D)	$g(x) = \sqrt{27 \left(\frac{-x}{3}\right)^2 + 4} = \sqrt{x^2 + 4}$	NI I		$k \neq 27$, $k \neq 0$ or which simplifies to $x^3 + 4$
		A1	2	ACF
	Total		6	
5(a)	$(1-x)^3 = 1 - 3x + 3x^2 - x^3$	M1		3 terms correct or 1 (\pm)3 (\pm)3 (\pm)1 seen
		A1	2	All correct
(b)	$(1+y)^4 = 1 + 4y + 6y^2 + 4y^3 + y^4$	M1		4 terms correct, accept unsimplified
		A1		All 5 terms correct and simplified at some
	$(-)^4 (-)^3$			stage
	(1+y) - (1-y) =			
	(4y+3y) + (6y2 - 3y2) + (4y3 + y3) + y4			
	$= 7y + 3y^2 + 5y^3 + y^4$	A2,1	4	A2 Be convinced as part answer is given
	(as required with $p=3$ and $q=5$)			(A1 for three terms found correctly or if
				not show $7v+v^4$)
(a)	$\int \left[\left(1 + \sqrt{r} \right)^4 - \left(1 - \sqrt{r} \right)^3 \right] dr =$			
(0)	$\int \left[\begin{pmatrix} 1 + \sqrt{x} \end{pmatrix} - \begin{pmatrix} 1 - \sqrt{x} \end{pmatrix} \right] dx =$			
	$\int \left(7\sqrt{r} + 3r + 5r\sqrt{r} + r^2\right) dr$	M1		Use of part (b) $y \rightarrow \sqrt{x}$ OE before any
	$\int (7\sqrt{x} + 5x + 5x\sqrt{x} + x) dx$	1011		integration
	$\left((7 \cdot 0.5 + 2 \cdot 1 + 5 \cdot 1.5 + 1.5 + 1.2) \right)$			
	$\int (7x^2 + 5x + 5x^2 + x^2) dx$			
	$7x^{1.5}$ $3x^2$ $5x^{2.5}$ x^3	1		Correct integration of an x^k term where k
	$=\frac{1.5}{1.5}+\frac{1}{2}+\frac{1}{2.5}+\frac{1}{3}$ (+c)	ml		is non-integer
	$= \frac{14}{2}x^{1.5} + \frac{3}{2}x^2 + 2x^{2.5} + \frac{1}{2}x^3 (+c)$	A2,1F	4	Coeffs simplified; condone absent $(+c)$
	3 2 3			Ft on c's p and q ie 2^{nd} term $+\frac{p}{2}x^2$ and
				2a
				$3^{\rm rd}$ term is $+\frac{24}{5}x^{2.5}$.
				(A1F for three of these four ft terms or for
				four correct ft terms unsimplified)
	Total		10	

MPC2 (cont)					
Q	Solution	Marks	Total	Comments	
6(a)(i)	$ar^2 = 36; ar^5 = 972;$	M1		For $ar^2 = 36$ or $ar^5 = 972$ or for seeing $36r^3 = 972$	
	$r^3 = \frac{972}{36} \ (= 27) \ \Rightarrow r = 3$	A1	2	CSO AG Full valid completion.	
(ii)	$a \times 3^2 = 36$	M1		OE. PI	
	<i>a</i> = 4	A1	2	Correct answer without working scores the two marks	
(b)(i)	$\sum_{n=1}^{20} u_n = S_{20} = \frac{a(1-r^{20})}{1-r}$	M1		OE	
	$=\frac{4(1-3^{20})}{-2}=-2(1-3^{20})=2(3^{20}-1)$	A1	2	CSO AG Be convinced	
(ii)	$u_n = a \times 3^{n-1}$	B1		Seen or used	
	$4 \times 3^{n-1} > 4 \times 10^{15} \Longrightarrow 3^{n-1} > 10^{15}$			Or finds values of μ for appropriate	
	$(n-1)\log 3$ (>) $\log 10^{15}$	M1		adjacent integer values of u_n for appropriate adjacent integer values of n so that u_n 's are either side of 4×10^{15}	
	$n-1 > \frac{15}{\log_{10} 3}; n-1 > 31.4$				
	(n > 32.4 and <i>n</i> is an integer so least value of <i>n</i> is) $n = 33$	A1	3	CSO	
	Total		9		

MPC2 (cont)				
Q	Solution	Marks	Total	Comments
7(a)	$y = x + 3 + \frac{8}{x^4} = x + 3 + 8x^{-4}$	B 1		For $\frac{8}{x^4} = 8x^{-4}$ PI by correct
				differentiation of 3 rd term
	$\frac{dy}{dx} = 1 - 32x^{-5}$ or $1 - \frac{32}{x^5}$	M1 A1	3	$k x^{-5}$ OE For either
(b)	When $x = 1$, $y = 12$	B1		
	When $x = 1$, $\frac{dy}{dx} = 1 - 32 = -31$	M1		Attempt to find value of $\frac{dy}{dx}$ when $x=1$
	Tangent: $y - 12 = -31(x - 1)$	A1F	3	Only ft on c's answer to (a). Any correct (ft on c's (a)) form.
(c)	$1 - 32x^{-5} = 0$	M1		$1 - 32x^{-5} = 0$ or c's $\frac{dy}{dx} = 0$
	$\Rightarrow x^5 = 32$	m1		Attempt to form $x^n = \text{const} (\neq 0)$. PI by next line
	$\Rightarrow x = 2$	A1		CSO
	(Coordinates of M) (2, 5.5)	A1	4	CSO
(d)(i)	$\int \left(x+3+\frac{8}{x^4}\right) \mathrm{d}x$			
	$=\frac{x^2}{3}+3x-\frac{8}{3}x^{-3}+c$	M1		Power –3 correctly obtained
	2 3	A1		$-\frac{8}{3}x^{-3}$
		B1	3	$\frac{x^2}{2} + 3x + c$
(ii)	Area = $\left[\frac{x^2}{2} + 3x - \frac{8}{3}x^{-3}\right]_{1}^{2}$			
	$= \left(2+6-\frac{1}{3}\right) - \left(\frac{1}{2}+3-\frac{8}{3}\right)$	M1		Attempting to calculate $F(2) - F(1)$ where $F(x)$ is c's answer to part (d)(i) provided F is not just the c's integrand $(x+3+8/x^4)$
	$=\frac{9}{2}+\frac{7}{3}=\frac{41}{6}$	A1	2	OE Accept 6.83 or better provided d(i) used
(e)	<i>k</i> = - 5.5	B1F	1	Ft on $-y_M$ from part (c).
	Total		16	

MPC2 (cont	MPC2 (cont)					
Q	Solution	Marks	Total	Comments		
8(a)	$\log_k x^2 - \log_k 5 = 1$	M1		A valid law of logs used correctly		
	$\log_k \frac{x^2}{5} = 1$	M1		Another valid law of logs used correctly or correct method to reach $\log f(x) = \log 5k$		
	$\log_k \frac{x^2}{5} = \log_k k$ [or $\log x^2 = \log 5k$]	A1		PI by next line		
	$\Rightarrow \frac{x^2}{5} = k \text{ie} k = \frac{x^2}{5}$	A1	4	Accept either of these two forms.		
(b)	$\log_a y = \frac{3}{2};$ $\log_4 a = b + 2$					
	$\Rightarrow y = a^{\frac{1}{2}} \qquad \Rightarrow a = 4^{b+2}$	M1		For either equation		
	$y = (4^{b+2})^{\frac{3}{2}}$	m1		Elimination of <i>a</i> from two correct equations not involving logarithms		
	$y = 2^{3(b+2)}$; $y = 2^{3b+6}$	A1	3	CSO Either form acceptable		
	Total		7			

Mark Scheme – Gene	eral Certificate of Education	(A-level) Mathematics -	- Pure Core 2 -	January 2011
--------------------	-------------------------------	-------------------------	-----------------	--------------

MPC2 (cont				
Q	Solution	Marks	Total	Comments
9(a)	$\tan x = -3$ $\Rightarrow x = \tan^{-1}(-3) \qquad (=-71.56)^{\circ}$	M1		PI eg by 71(.56) or -71(.56) seen
	<i>x</i> = 108°, 288°	A1,A1	3	Condone more accurate answers. (108.4349, 288.4349). [Ignore answers outside interval; If more than 2 answers inside interval -1 from A marks for each extra to a min of 0]
(b)(i)	$7\sin^2\theta + \sin\theta\cos\theta = 6(\cos^2\theta + \sin^2\theta)$ $7\sin^2\theta - 6\sin^2\theta + \sin\theta\cos\theta - 6\cos^2\theta = 0$ $\Rightarrow \sin^2\theta + \sin\theta\cos\theta - 6\cos^2\theta = 0$	M1		$\cos^2 \theta + \sin^2 \theta = 1$ used; OE
	$\Rightarrow \frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\sin \theta}{\cos \theta} - 6 = 0$	M1		$\frac{\sin\theta}{\cos\theta} = \tan\theta \text{used}$
	$\Rightarrow \tan^2 \theta + \tan \theta - 6 = 0$	A1	3	CSO AG
(ii)	$(\tan\theta + 3)(\tan\theta - 2) = 0$	M1		Factorise or other valid method to solve quadratic
	$\tan\theta = -3$ or $\tan\theta = 2$	AI		Ineed both
	$\theta = 108^{\circ}, 288^{\circ}; \theta = 63^{\circ}, 243^{\circ};$	B2F,1F	4	Only ft on (a) for the c's two +'ve tan ⁻¹ (-3) vals. [B1 if 3 correct (ft)] Condone more accurate answers. (108.4349, 288.4349; 63.4349, 243.4349) [Ignore answers outside interval; If more than 2 answers for each inside interval, -1 for each extra from Bs to a min of 0]
	Total		10	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) June 2011

Mathematics

MPC2

(Specification 6360)

Pure Core 2

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Q	Solution	Marks	Total	Comments
1(a)	$\frac{10}{\sin\theta} = \frac{9}{\sin 54}$	M1		Sine rule, with $\sin \theta$ being the only unknown
	$\sin \theta = \frac{10 \times \sin 54}{9} \left\{ = \frac{8.09}{9} \right\} \left\{ = \frac{10}{11.12} \right\}$	m1		Correct rearrangement to 'sin θ =' or to ' θ = sin ⁻¹ ()
	$\sin \theta = 0.898(9)$, $\theta = 64.01(48)$			
	$\theta = 64^{\circ} \{ \text{to nearest degree} \}$	A1		AG m1 must have been awarded and must see at least 3sf value either for $\sin\theta$ so that $0.898 \le \sin\theta \le 0.8993$ or for
			3	θ so that $64.0 \le \theta \le 64.1$ as well as seeing ' θ (OE)= 64'
(b)	Angle $C = 180 - (54 + \theta) = 62 \{ \text{to } 2\text{sf} \}$	B1		C = 62. AWRT 62. PI if ' $C = 180 - (54+\theta)$ ' and accurate later work.
	$Area = \frac{1}{2} \times 10 \times 9\sin 62$	M1		OE Ft c's value for C ($C \neq 54$, $C \neq \theta$)
	$= 39.73 = 40\{$ cm ² to nearest sq cm $\}$	A1	3	If not 40 condone a value 39.7 to 39.8 inclusive.
	Total		6	

Q	Solution	Marks	Total	Comments
2(a)	{Area of sector =} $\frac{1}{2}r^2\theta = \frac{1}{2} \times 6^2 \times 0.5$ = 9 (cm ²)	M1 A1	2	$\frac{1}{2}r^2\theta$ seen within (a) or used for the area Condone missing/incorrect units
(b)(i)	{Arc =} $r\theta = 6 \times 0.5$ = 3 (cm)	M1 A1	2	$r\theta$ seen within (b) or used for the arc length Condone missing/incorrect units
(ii)	Perimeter of sector = $6+6+$ arc length = 15 (cm) (= 5×3) Perimeter (of sector) = $5\times$ (length of) arc	M1 A1	2	PI by value of 12+c's (b)(i) answer Completion, including concluding statement
	Total		6	

Q	Solution	Marks	Total	Comments
3 (a)	(2 + x2)3 = [(2)3]+3(2)2(x2) + 3(2)(x2)2 [+(x2)3]	M1		For either (1),3,3,(1) OE unsimplified or $\begin{pmatrix} 3 \\ 1 \end{pmatrix} 2^2 x^2 + \begin{pmatrix} 3 \\ 2 \end{pmatrix} 2(x^2)^2$ OE. PI
	$p = 3(2)^2 = 12$	A1		AG Be convinced. Condone left as $12x^2$
	<i>q</i> = 6	B1	3	Accept left as $6x^4$
(b)(i)	$\int \frac{(2+x^2)^3}{x^4} dx = \int x^{-4} \left(8 + 12x^2 + qx^4 + x^6 \right) dx$ or $\int \left(\frac{8}{x^4} + \frac{12}{x^2} + q + x^2 \right) dx$	M1		Uses (a) and either an indication that $\frac{1}{x^n} = x^{-n}$ in a product PI or cancelling to get at least 3 correct ft terms
	$\int \left(8x^{-4} + 12x^{-2} + q + x^2\right) dx$	A1F		Ft on c's non-zero q . PI by next line in solution
	$=\frac{8x^{-3}}{-3}+\frac{12x^{-1}}{-1}+qx+\frac{x^3}{3} \{+c\}$	M1		Correct integration of either $8x^{-4}$ or $12x^{-2}$; accept unsimplified
		A1		Correct integration of both $8x^{-4}$ and $12x^{-2}$; accept unsimplified
	$=$ +6x+ $\frac{x^3}{3}$ +c	B1F		For "6" $x + \frac{x^3}{3} + c$ simplified.
	$(= -\frac{8}{3}x^{-3} - 12x^{-1} + 6x + \frac{x^3}{3} + c)$		5	The only ft is "6" replaced by c's value for q where q is a non-zero integer.
(b)(ii)	$\int_{1}^{2} \frac{\left(2+x^{2}\right)^{3}}{x^{4}} dx = \left\{-\frac{8}{3}(2)^{-3} - 12(2^{-1}) + 6(2) + \frac{2^{3}}{3}\right\} - \frac{1}{3}$	M1		Dealing correctly with limits:
	$\left\{-\frac{8}{3}(1)^{-3}-12(1)^{-1}+6(1)+\frac{1}{3}\right\}$	1711		F(2)-F(1) (must have attempted integration to get F ie c's F is not just the integrand)
	$= \left(-\frac{1}{3} - 6 + 12 + \frac{8}{3}\right) - \left(-\frac{8}{3} - 12 + 6 + \frac{1}{3}\right)$			
	$=16\frac{2}{3}$	A1	2	OE exact answer eg 50/3. NMS scores 0
	Total		10	

Q	Solution	Marks	Total	Comments
4(a)		B1		Any graph only crossing the <i>y</i> -axis at $(0, 1)$ stated /indicated (accept 1 on <i>y</i> -axis as equivalent) and not drawn below <i>x</i> -axis
	(0,1)	B1	2	Correct shaped graph, must clearly go below the intersection pt and an indication of correct behaviour of curve for large positive and large negative values of x . Ignore any scaling on axes.
(b)	Translation;	B1		Accept 'transl' as equivalent [T or Tr is NOT sufficient]
	$\begin{bmatrix} 0\\ -5 \end{bmatrix}$	B1	2	If vector not given, accept full equivalent to vector in words provided linked to 'transl/ move/shift' (B0B0 if >1 transformation)
(c)(i)	$4^{x} = (2^{2})^{x} = 2^{2x} = (2^{x})^{2} = Y^{2}$ $2^{x+2} = 2^{x} \times 2^{2} = 4Y$	M1		Justifying either $4^x = Y^2$ or $2^{x+2} = 4Y$ with no errors seen
	$4^x - 2^{x+2} - 5 = 0 \Longrightarrow Y^2 - 4Y - 5 = 0$	A1	2	AG Be convinced; must have justified both of the above.
(ii)	(Y-5)(Y+1) = 0	M1		Correct factorising or use of quadratic formula or completing sq. PI by both solns 5& -1 seen
	(Since) 2^{-50} (for all real <i>x</i> ,) 2^{-5} so only one (real) solution	E1		Rejection of 2^x (condone Y) negative, with justification, (condone " 2^x not negative") followed by statement
	$\log 2^x = \log 5 \implies x \log 2 = \log 5$	M1		Eqn of form $p^x = q \Rightarrow x \log p = \log q$ provided $p > 0$ & $q > 0$ OE eg $x = \log_2 5$
	x = 2.3219 = 2.322 (to 3dp)	A1	4	Condone > 3dp but must see explicit use of logs and must only be the one solution.
	Total		10	

Q	Solution	Marks	Total	Comments
5 (a)		B1		For either 6 or $6x^0$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6 - 3x^{\frac{1}{2}}$	M1		$Ax^{\frac{3}{2}-1}, A \neq 0$ OE
		A1	3	$6-3x^{\frac{1}{2}}$ or $6-3\sqrt{x}$ with no '+c' [If unsimplified here, A1 can be awarded retrospectively if correct simplified expression is seen explicitly in (b)(i).]
(b)(i)	$6-3x^{\frac{1}{2}}=0$	M1		Equating c's $\frac{dy}{dx}$ to 0 PI by correct ft rearrangement of c's dy/dx=0
	$x^{\frac{1}{2}} = 2 \Longrightarrow x = 2^2$	m1		$x^{\frac{1}{2}} = k$ (k>0), to $x = k^2$. PI by correct value of x if no error seen
	<i>M</i> (4, 8)	A1	3	SC If M0 award B1 for (4, 8)
(ii)	Eqn of normal at <i>M</i> is $x = 4$	B1F	1	Ft on $x = c$'s x_M
(c)(i)	When $x = \frac{9}{4}$, $\frac{dy}{dx} = 6 - 3 \times \frac{3}{2} = \frac{3}{2}$	M1		Attempt to find $\frac{dy}{dx}$ when $x = \frac{9}{4}$
	Gradient of normal at $P = -\frac{2}{3}$	m1		$m \times m' = -1$ used
	Eqn of normal: $y - \frac{27}{4} = -\frac{2}{3} \left(x - \frac{9}{4} \right)$	A1		ACF eg $y = -\frac{2}{3}x + \frac{33}{4}$
(;;)	$12y - 81 = -8x + 18 \Longrightarrow 8x + 12y = 99$	A1	4	Coeffs and constant must now be positive integers, but accept different order eg $12y + 8x = 99$
(11)	8(4) + 12y = 99	M1		Solving c's answer (b)(ii), (must be in form $x =$ positive const), with c's answer (c)(i). PI by correct earlier work and <u>correct</u> coordinates for <i>R</i> .
	$R\left(4,\frac{67}{12}\right)$	A1	2	Accept 5.58 or better as equivalent to $\frac{67}{12}$
	Total		13	

Q	Solution	Marks	Total	Comments
6(a)	h = 0.5	B1		h = 0.5 stated or used. (PI by x-values
				0, 0.5, 1, 1.5, 2 provided no contradiction)
	$f(x) = \sin x$ $L \approx \frac{k/2}{2}$			
	$1 \approx n/2 \{ \dots \}$ $\{ \} - f(0) + f(2) + 2[f(0, 5) + f(1) + f(1, 5)]$	M1		OF summing of areas of 'trapezia'
	[1, j-1(0) + 1(2) + 2[1(0, 3) + 1(1) + 1(1, 3)]	1011		of summing of areas of superior
	{.}=			
	0+0.90929+2[0.4794+0.84147+0.99749]	A1		Min. of 2dp values rounded or truncated.
	(-0.00020 + 202.218 + 1) = (0.00020 + 4.626 + 1)			Can be implied by later correct work
	{-0.90929+2[2.318]}-{0.90929+4.030}			rounds to 1 39
	$(I \approx) 0.25[5.546] = 1.3865 = 1.39$ (to 3sf)	A1	4	CAO Must be 1.39
(b)	Stretch(I) in y-direction(II) scale factor 2(III)	M1	2	Need (I) and either (II) or (III)
		AI	2	All correct. Need (1) and (11) and (11) $[>1$ transformation scores $0/21$
(c)	$\sin x = 1$			$\sin x$
	$\frac{1}{\cos x} = \frac{1}{2}; \tan x = 0.3$	M1		$\frac{1}{\cos x} = \tan x \text{ used to get } \tan x = k$
				or identity $\cos^2 x + \sin^2 x = 1$ used to get
				either $\sin^2 x = p$ or to get $\cos^2 x = q$, (p and q
	$\tan x = 0.5$	A1		1 $\sqrt{4}$
				Either $\tan x = \frac{1}{2} \operatorname{or} \cos x = \pm \sqrt{\frac{4}{5}} (=\pm 0.894)$
				$\overline{1}$
				or $\sin x = \pm \sqrt{\frac{1}{5}}$ (=±0.447)
				V S
	$x = \alpha$ or $\pi + \alpha$ where $\alpha = \tan^{-1}(k)$	m1		Correct method to find 2 nd angle. Any in
				wrong ft quadrants then m0. In case of
				squaring method candidates must also
				may rejected the extra quadrants for the m1. Condone degrees or mixture
	x = 0.464, 3.61	A1	4	Both. Condone>3sf [0.463(6), 3.60(5or 6.)]
				Accept pair of truncated values [0.463, 3.60]
	Total		10	ignore any answers outside interval 0 to 0.28
				1

Q	Solution	Marks	Total	Comments
7(a)	48 = 60 p + q 12 = 12 p + q	M1 M1		M1 for each equation in ACF (Condone embedded values for the M1M1)
	$36 = 48p$ or $p = \frac{36}{48}$	m1		Valid method to solve the correct two simultaneous eqns in p and q to at least the stage $ap = b$ or $cq = d$
	$p = \frac{5}{4}$	A1		AG (condone if left as equiv. decimal)
	<i>q</i> = 3	B1	5	Can award if seen <u>explicitly</u> in (b) and no contradiction [ie not attempted in (a)]
(b)	$u_3 = 36 + q = 39$	B1F	1	If not 39, ft on $(36 + c's q)$
	Total		6	

Q	Solution	Marks	Total	Comments
8	$\dots = 9\sin^2 x + 6\sin x \cos x + \cos^2 x + \sin^2 x - 6\sin x \cos x + 9\cos^2 x$	M1		Attempt at expanding both sets of brackets. Minimum requirement either one of the two expansions correct or 4 of these 6 terms seen. Expanding and simplifying the given expression in one step to get the correct two terms scores this M1 and next A1
	$\dots = 10\cos^2 x + 10\sin^2 x$	A1		Either correct pair of expansions and simplification to remove sinxcosx terms or full collecting of like terms within the original correct expansion
	$= 10(1 - \sin^2 x) + 10\sin^2 x$	M1		$\cos^2 x + \sin^2 x = 1$ clearly used. If identity is applied correctly, but not directly, it must be stated at the relevant point in the proof.
	= 10 (which is an integer)	A1	4	CSO [all previous 3 marks must have been scored] Condone absence of statement after 10 obtained correctly
	Total		4	

Q	Solution	Marks	Total	Comments
9(a)	$\{S_{\infty} =\} \frac{a}{1-r} = \frac{12}{1-\frac{3}{2}}$	M1		$\frac{a}{1-r}$ used
	8 { $S_{\infty} =$ } 19.2	A1	2	19.2 OE NMS mark as 2/2 or 0/2
(b)	{6th term = } ar^{6-1}	M1		Stated or used
	$= 12 \times \left(\frac{3}{8}\right)^3 = 2 \times 2 \times 3 \times \left(\frac{3}{2 \times 2 \times 2}\right)^3$	m1		Changing 8 and 12 in correct expression to correct products/powers of 2 and 3
	$=\frac{2\times2\times3\times3^5}{(2^3)^5}=\frac{2^2\times3^6}{2^{15}}=\frac{3^6}{2^{13}}$	A1	3	AG Be convinced
(c)(i)	$\{u_n =\} 12 \times \left(\frac{3}{8}\right)^{n-1}$	B1	1	OE. eg $32(3/8)^n$
(ii)	$\log u_n = \log 12 + \log \left(\frac{3}{8}\right)^{n-1}$			$\frac{\text{Log laws}}{\log(PQ) = \log P + \log Q};$
	$\log u_n = \log 12 + (n-1)\log\left(\frac{3}{8}\right)$			$\log\left(\frac{P}{Q}\right) = \log P - \log Q$
	$\log u_n = \log 12 + (n-1)[\log 3 - \log 8]$	M1		$\log (P)^{*} = k \log P$ Using (c)(i) and taking logs: one log law used correctly, on a correct expression for u_n .
		M1		a second different log law used correctly, indep of prev M error and ft on cand's (c)(i) provided cand's u_n expression has a power involving <i>n</i> .
	$\log u_n = \log 3 + 2\log 2 + (n-1)[\log 3 - 3\log 2]$	m1		A third different log law used correctly (or equivalent valid step) to reach a correct RHS whose terms are all multiples of log2 and log3. Dep on both prev two Ms
	$\log u_n = n \log 3 - 3n \log 2 + 5 \log 2$			^ *
	$\log_a u_n = n \log_a 3 - (3n-5) \log_a 2$	A1	4	CSO AG Be convinced, no slips although we will condone the absence of the bases <i>a</i> even in the final line.
	Total		10	

General Certificate of Education (A-level) January 2012

Mathematics

MPC2

(Specification 6360)

Pure Core 2

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MPC2

Q	Solution	Marks	Total	Comments
1(a)	{Area of sector =} $\frac{1}{2}r^2\theta = \frac{1}{2} \times 6^2 \times \theta$	M1		$\frac{1}{2}r^2\theta$ seen in (a) or used for the area
	$21.6 = 18\theta$ so $\theta = 1.2$	A1	2	Must be exact, not rounded to
(b)	{Arc =} $r\theta$	M1		$r\theta$ seen in (b) or used for the arc length
	$\dots = 7.2 \{ cm \}$	A1F	2	Ft on 6×c's value for θ provided 4 <arc<10.< th=""></arc<10.<>
	Total		4	
2(a)	h = 1	B1		h = 1 stated or used. (PI by <i>x</i> -values 0,1,2,3,4 provided no contradiction)
	$f(x) = \frac{2^{x}}{x+1}$ I \approx h/2{} {.}=f(0)+f(4)+2[f(1)+f(2)+f(3)]	M1		OE summing of areas of the 'trapezia'
	$\{.\} = 1 + \frac{16}{5} + 2\left(\frac{2}{2} + \frac{4}{3} + \frac{8}{4}\right)$ $= 1 + 3.2 + 2(1 + 1.33 + 2)$	A1		OE Accept 1dp evidence. Can be implied by later correct work provided >1 term or a single term which rounds to 6.43
	$(I \approx) 0.5[4.2+2\times4.333] = 6.43$ (to 3sf)	A1	4	CAO Must be 6.43
(b)	Increase the number of ordinates	E1	1	OE eg increase the number of strips.
	Total		5	
3(a)	$\sqrt[4]{x^3} = x^{\frac{3}{4}}$	B1	1	Accept $k = \frac{3}{4}$ OE
(b)	$\frac{1-x^2}{\sqrt[4]{x^3}} = \frac{1}{\sqrt[4]{x^3}} - \frac{x^2}{\sqrt[4]{x^3}}$ $= x^{-k} - \frac{x^2}{\sqrt[4]{x^3}} [\text{ or } \frac{1}{\sqrt[4]{x^3}} - x^{2-k}]$	M1		Split followed by at least one correct index law used to remove denominator.
	$= x^{-\frac{3}{4}} - x^{\frac{5}{4}}$	A1F	2	If incorrect, ft on c's non-integer k value answer to part (a), provided M1 has been awarded. Accept answer given in form of values for p and q .
			3	

MPC2 (cor	nt)
~	

Q	Solution	Marks	Total	Comments
4(a)	Area = $\frac{1}{2} \times 10 \times AC \sin 150$	M1		$\frac{1}{2} \times 10 \times AC \sin 150$
	40 = 2.5AC so $AC = 16$ (m)	A1	2	AG Be convinced
(b)	$\{BC^{2} = \}10^{2} + 16^{2} - 2 \times 10 \times 16 \times \cos 150$ = 100 + 256 + 277.128 $BC = \sqrt{633.128} = 25.162 = 25.16m$	M1 m1 A1	3	RHS of cosine rule used Correct order of evaluation AWRT 25.16
(c)	$\frac{10}{\sin C} = \frac{BC}{\sin 150} \qquad (\text{or}\frac{BC}{\sin 150} = \frac{AC}{\sin B})$	M1		A correct equation using sine rule or cosine rule or area formula for either <i>B</i> or <i>C</i> . Subst of <i>BC</i> or <i>AC</i> not required for this M
	$\sin C = \frac{10\sin 150}{"25.16"} (=0.1987)$	m1		Correct rearrangement to either $\sin C$ or $\cos C$ or $\sin B$ or $\cos B$ equal to numerical expression ft on c's numerical value for BC . By the correct C or the correct B if Macord by
	(or $\sin B = \frac{16\sin 150}{"25.16"}$ (=0.317 or 0.318))			<i>BC</i> . PI by correct <i>C</i> or (by correct <i>B</i> if Mscored)
	Smallest angle, $(C =) 11.5^{\circ}$ to 1dp	A1	3	Accept a value 11.4 to 11.5 inclusive.
			8	

MPC2 (c

Q	Solution	Marks	Total	Comments
5(a)(i)	Stretch(I) in <i>x</i> -direction(II) scale factor $\frac{1}{-}$ (III)	M1		Need (I) and either (II) or (III)
	6	A1	2	Need (I) and (II) and (III)
(ii)	$(g(x) =) = \left(1 + \frac{x - 3}{3}\right)^{6}$	M1		OE Replaces $\frac{x}{3}$ by $\frac{x-3}{3}$
	$= \left(\frac{x}{3}\right)^6 \text{ or } \frac{x^6}{3^6} \text{ or } \frac{x^6}{729}$	A1	2	Must be simplified
(b)	$\left(1+\frac{x}{3}\right)^{6} = 1 + \binom{6}{1}\frac{x}{3} + \binom{6}{2}\left(\frac{x}{3}\right)^{2} + \binom{6}{3}\left(\frac{x}{3}\right)^{3}$			
	=(1 +) 2x	B1		a=2. Condone '2 x '
	$+ \frac{6!}{4!2!} \left(\frac{x}{3}\right)^2 + \frac{6!}{3!3!} \left(\frac{x}{3}\right)^3$	M1		Either (1 6) 15 20 seen or $\begin{pmatrix} 6 \\ 2 \end{pmatrix}, \begin{pmatrix} 6 \\ 3 \end{pmatrix}$
	=(1+2x)			written (PI) in terms of factorials (OE)
	$+\frac{15}{9}x^2 + \frac{20}{27}x^3$			
	$b = \frac{5}{3}, c = \frac{20}{27}$	A1		$b = \frac{5}{3}$ (or $1\frac{2}{3}$). Condone+ $\frac{5}{3}x^2$
		A1	4	$c = \frac{20}{27}$. Condone+ $\frac{20}{27}x^3$
				Accept equivalent recurring decimals Ignore terms with higher powers of x
				SC II AUAU award A1 for either $15x^2 = 20x^3$
				$+15\frac{-}{9}$, $+20\frac{-}{27}$ seen or
				$+\frac{15x^2}{9}, +\frac{20x^3}{27}$ seen
	Total		8	
MPC2	(cont)			
------	--------			

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Q	Solution	Marks	Total	Comments
$\frac{25}{2}[2a+24d]=3500$ $25(2a+24d)=7000 \text{ or } [\frac{50a+600d}{2}=3500] \text{ m1}$ Forming equation and attempt to remove fraction or to expand brackets or better $50a+600d=7000 \text{ (or better)}$ so $a+12d=140$ A1 3 CSO AG Be convinced. $a+(5-1)d \text{ used correctly}$ Solving $a+12d=140$ simultaneously with either $a+4d=100$ are $4d=100$ are $5d=40$ $\Rightarrow d=5$ $\Rightarrow a=80$ A1 A1 4 (c) $33\left(3500-\sum_{n=1}^{k}u_{n}\right)=67\sum_{n=1}^{k}u_{n}$ M1 $33\left(3500-\sum_{n=1}^{k}u_{n}+33\sum_{n=1}^{k}u_{n}$ M1 $33\times3500=67\sum_{n=1}^{k}u_{n}+33\sum_{n=1}^{k}u_{n}$ M1 $100\times\sum_{n=1}^{k}u_{n}=33\times3500$ $\Rightarrow \sum_{n=1}^{k}u_{n}=1155$ A1 3 (b) $32\left(3500-\sum_{n=1}^{k}u_{n}+33\sum_{n=1}^{k}u_{n}\right)$ M1 $33\left(3500-\sum_{n=1}^{k}u_{n}+33\sum_{n=1}^{k}u_{n}\right)$ M1 4 $33\left(3500-\sum_{n=1}^{k}u_{n}+33\sum_{n=1}^{k}u_{n}\right)$ M1 4 $33\left(3500-\sum_{n=1}^{k}u_{n}+33\sum_{n=1}^{k}u_{n}\right)$ M1 4 3 3 3 3 3 3 3 3 3 3	6(a)	$\{S_{25} =\} \frac{25}{2} [2a + (25 - 1)d]$	M1		$\frac{25}{2}[2a+(25-1)d]$ OE
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\frac{25}{2} [2a + 24d] = 3500$			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$25(2a+24d) = 7000 \text{ or } \left[\frac{50a+600d}{2} = 3500\right]$	m1		Forming equation and attempt to remove fraction or to expand brackets or better
(b) $5^{\text{th}} \text{ term } = a + 4d$ a + 12d = 140, a + 4d = 100 $\Rightarrow 8d = 40$ M1 M1 Solving $a + 12d = 140$ simultaneously with either $a + 4d = 100$ or $a + 5d = 100$ as far as eliminating either a or d . (c) $33\left(3500 - \sum_{n=1}^{k} u_n\right) = 67\sum_{n=1}^{k} u_n$ M1 $33 \times 3500 = 67\sum_{n=1}^{k} u_n + 33\sum_{n=1}^{k} u_n$ M1 $100 \times \sum_{n=1}^{k} u_n = 33 \times 3500 \Rightarrow \sum_{n=1}^{k} u_n = 1155$ A1 3 Correct rearrangement PI 100		50a + 600d = 7000 (or better) so $a + 12d = 140$	A1	3	CSO AG Be convinced.
$\Rightarrow d = 5$ $\Rightarrow a = 80$ (c) $33 \left(3500 - \sum_{n=1}^{k} u_n \right) = 67 \sum_{n=1}^{k} u_n$ $33 \left(3500 - \sum_{n=1}^{k} u_n \right) = 67 \sum_{n=1}^{k} u_n$ $33 \left(3500 - \sum_{n=1}^{k} u_n \right) = 67 \sum_{n=1}^{k} u_n$ $100 \times \sum_{n=1}^{k} u_n = 33 \times 3500 \Rightarrow \sum_{n=1}^{k} u_n = 1155$ A1 3 Correct rearrangement PI 100	(b)	$5^{\text{th}} \text{ term} = a + 4d$ a + 12d = 140 $a + 4d = 100$	M1		a + (5-1)d used correctly
$\Rightarrow d = 5$ $\Rightarrow a = 80$ (c) $33 \left(3500 - \sum_{n=1}^{k} u_n \right) = 67 \sum_{n=1}^{k} u_n$ $33 \times 3500 = 67 \sum_{n=1}^{k} u_n + 33 \sum_{n=1}^{k} u_n$ $100 \times \sum_{n=1}^{k} u_n = 33 \times 3500 \Rightarrow \sum_{n=1}^{k} u_n = 1155$ A1 A1 A A1 A A A1 A A A A A A A A A A		$\Rightarrow 8d = 40$	M1		Solving $a + 12d = 140$ simultaneously with either $a+4d = 100$ or $a+5d = 100$ as far as eliminating either a or d.
(c) $33\left(3500 - \sum_{n=1}^{k} u_n\right) = 67\sum_{n=1}^{k} u_n$ $33 \times 3500 = 67\sum_{n=1}^{k} u_n + 33\sum_{n=1}^{k} u_n$ $100 \times \sum_{n=1}^{k} u_n = 33 \times 3500 \Rightarrow \sum_{n=1}^{k} u_n = 1155$ A1 A1 A1 A1 A1 A1 A1 A1 A1 A1		$\Rightarrow d = 5$ $\Rightarrow a = 80$	A1 A1	4	
$33 \times 3500 = 67 \sum_{n=1}^{k} u_n + 33 \sum_{n=1}^{k} u_n \qquad \text{m1}$ $100 \times \sum_{n=1}^{k} u_n = 33 \times 3500 \implies \sum_{n=1}^{k} u_n = 1155 \qquad \text{A1}$ 3 Correct rearrangement PI $100 \times \sum_{n=1}^{k} u_n = 33 \times 3500 \implies \sum_{n=1}^{k} u_n = 1155 \qquad \text{A1}$	(c)	$33\left(3500 - \sum_{n=1}^{k} u_n\right) = 67\sum_{n=1}^{k} u_n$	M1		Recognition that $\sum_{n=1}^{25} u_n = 3500$
$100 \times \sum_{n=1}^{k} u_n = 33 \times 3500 \implies \sum_{n=1}^{k} u_n = 1155$ A1 3 Total 10		$33 \times 3500 = 67 \sum_{n=1}^{k} u_n + 33 \sum_{n=1}^{k} u_n$	m1		Correct rearrangement PI
Total 10		$100 \times \sum_{n=1}^{k} u_n = 33 \times 3500 \implies \sum_{n=1}^{k} u_n = 1155$	A1	3	
		Total		10	

MPC2 (cont)

Q	Solution	Marks	Total	Comments
7(a)	y A	B1		Correct shaped graph in 1^{st} two quadrants only and indication of correct behaviour of curve for large positive and negative vals. of <i>x</i> . Ignore any scaling on axes.
	1 0 x	B1	2	y-intercept indicated as 1 on diagram or stated as intercept=1 or as coords (0, 1).
(b)	$\frac{1}{2^x} = \frac{5}{4} \implies 2^{-x} = \frac{5}{4}$ (or $2^x = \frac{4}{5}$ or $2^{2-x} = 5$)	M1		Correct 'rearrangement' to eg $2^{x} = \frac{4}{5}$ or $2^{-x} = \frac{5}{4}$ or $0.5^{x} = 1.25$ PI
				or $\log 1 - \log 2^x = \log(5/4)$ or better
	$\log 2^{-x} = \log 1.25 \Longrightarrow - x \log 2 = \log 1.25$	M1		Takes logs of both sides of eqn of
	$[\log 2^{x} = \log 0.8 \Rightarrow x \log 2 = \log 0.8]$ $[\log 2^{2-x} = \log 5 \Rightarrow (2-x) \log 2 = \log 5]$			form either $2^{x} = k$ or $2^{x} = k OE$ and uses 3^{rd} law of logs or log to base 2 (or base $\frac{1}{2}$) correctly
	$[2^{x}=0.8, x = \log_{2} 0.8]; [0.5^{x}=1.25, x = \log_{0.5} 1.25]$ x = -0.321928 so $x = -0.322$ (to 3sf)	A1	3	Condone >3sf [Logs must be seen to be used otherwise max of M1M0A0]
(c)	$\log_a b^2 + 3\log_a y = 3 + 2\log_a\left(\frac{y}{a}\right)$			
	$\log_a b^2 + 3\log_a y = 3 + 2[\log_a y - \log_a a]$	M1		A log law used correctly; condone missing base <i>a</i> .
	$\log_a b^2 + \log_a y = 3 - 2\log_a a$			
	$\log_a b^2 y = 3 - 2\log_a a$	M1		A different log law used correctly condone missing base <i>a</i> .
	$\log_a b^2 y = 3 - 2(1)$ [or $\log_a b^2 y + \log_a a^2 = 3$]	M1		Either a further different log law used correctly condone missing base <i>a</i> or $\log_a a = 1$ stated/used.
	$\Rightarrow \log_a b^2 y = 1 \Rightarrow b^2 y = a$	m1		$\log_a Z = k \Longrightarrow Z = a^k$ used or a
		A 1	5	correct method to eliminate logs (dep on no misapplication of any log law OE in the whole solution) Rearrangements which require only two of the above Ms to eliminate logs correctly: award the remaining M with the m mark.
	$\Rightarrow y = ab^{-2}$	AI	3	
	Total		10	

MPC2 (cont)

Q	Solution	Marks	Total	Comments
8 (a)	$2\sin\theta = 7\cos\theta \Longrightarrow \frac{\sin\theta}{\cos\theta} = \frac{7}{2}$	M1		$\tan \theta = \frac{\sin \theta}{\cos \theta}$ clearly used to reach either
				$2\tan\theta = 7 \text{ or } 2/7 \tan\theta = 1 \text{ or } \tan\theta = 3.5 \text{ or}$
				even $\tan \theta = 2/7$ after seeing $\frac{\sin \theta}{\cos \theta} = \frac{2}{7}$
	$\Rightarrow \tan \theta = \frac{7}{2}$	A1	2	$\frac{7}{2}$ OE eg 3.5
(b)(i)	$6\sin^2 x = 4 + \cos x$			
	$6(1-\cos^2 x) = 4 + \cos x$	M1		$\cos^2 x + \sin^2 x = 1$ used
	$6 - 6\cos^2 x = 4 + \cos x$			
	$\Rightarrow 6\cos^2 x + \cos x - 2 = 0$	A1	2	CSO AG Be convinced.
(ii)				
(II)	$6\sin^2 x = 4 + \cos x \Longrightarrow$			
	$6\cos^2 x + \cos x - 2 = 0$	M1		Uses (b)(i)
	$(3\cos x + 2)(2\cos x - 1) (=0)$	m1 A1		$(3c \pm 2)(2c \pm 1)$ or by formula Correct factorisation or quadratic formula
	2 1			with $b^2 - 4ac$ evaluated correctly. (PI by both correct values for $\cos x$)
	$\cos x = -\frac{2}{3}, \ \cos x = \frac{1}{2}$	A1		CSO Both values for cos x correct. Accept 3sf rounded or truncated
	$x = 132^{\circ}, 228^{\circ}, 60^{\circ}, 300^{\circ}$	B2,1,0	6	B1 for any 3 of the 4 values correct.
				228.189).
				Ignore answers outside the given interval.
				Deduct 1 mark from these two B marks for
				the given interval to a min of B0
				NMS: max possible is B2
	Total		10	

MPC2	(cont)
------	--------

Q	Solution	Marks	Total	Comments
9(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 12 - 5x^{\frac{2}{3}}$	M1 A1	2	$kx^{\frac{2}{3}}$ term. ACF
(b)(i)	When x=0, $\frac{dy}{dx} = 12$ Eqn of tangent at <i>O</i> is $y = 12x$	B1F B1F	2	Ft on c's y' evaluated correctly at $x=0$ OE Ft on c's value for y'(0) provided y'(0)>0.
(ii)	When $x = 8$, $\frac{dy}{dx} = 12 - 5 \times (8)^{\frac{2}{3}}$	M1		Attempt to find $\frac{dy}{dx}$ when $x = 8$
	Equation of tangent at (8, 0) is y - 0 = y'(8)[x - 8]	ml		y = y'(8)[x-8] OE
	$y = -8(x-8) \implies y+8x=64$	A1	3	CSO AG
(c)	$\int \left(12x - 3x^{\frac{5}{3}}\right) dx = \frac{12x^2}{2} - \frac{3x^{\frac{8}{3}}}{\frac{8}{3}} (+c)$	M1		$kx^{\frac{5}{3}+1}$ term after integrating, condone k left unsimplified for this M mark.
	$= 6r^2 - \frac{9}{2}r^{\frac{8}{3}}$ (+c)	B1		For $6x^2$ OE eg $(12x^2/2)$
	8 (10)	A1	3	For $-\frac{9}{9}x^{\frac{3}{3}}$ OE
(d)	Area bounded by curve and <i>x</i> -axis			ð
	$= \int_{0}^{8} \left(12x - 3x^{\frac{5}{3}} \right) dx = 6 \times 8^{2} - \frac{9}{8} \times (8)^{\frac{8}{3}}$	M1		\pm F(8) {- F(0)} PI following integration
	= 384 - 288 = 96	A1		PI by correct final answer if evaluation not seen here
	At <i>P</i> , $12x + 8x = 64$	M1		Solving $y +8x = 64$ and c's $y=kx$, $k>0$, down to an eqn in one variable
	$(x_P = 3.2)$ $y_P = 38.4$	A1		[$y+2y/3-64$] For $y_p = 38.4$ OE [If using integration to find area of triangle, award A1 if both ' $x_p = 3.2$ ' and correct integration of correct eqns of the 2 lines]
	Area of triangle $OPA = \frac{1}{2} \times 8 \times y_P$	M1		OE Need perpendicular ht to be linked to $y_P > 0$.
	Area of shaded region			~
	$= \operatorname{Area} \Delta OPA - \int_0^8 \left(12x - 3x^{\frac{5}{3}} \right) dx$	M1		M0 if evaluated to a value <0
	= 153.6 -96 = 57.6	A1	7	OE eg 288/5
	Total		17	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) June 2012

Mathematics

MPC2

(Specification 6360)

Pure Core 2

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

General Certificate of Education MPC2 June 2012

Q	Solution	Marks	Total	Comments
1(a)	(common difference) = 9	B 1	1	9
(b)	(100th term $) = 23 + (100 - 1) d$	M1		23 + (100 - 1) d or better seen (or used with $d = 9$ or with $d = c$'s answer (a))
	= 914	A1	2	914 NMS mark as B2 or B0
(c)	(Sum of series) = $\frac{280}{2} (23 + 2534)$			Substitution of $n = 280$, $l = 2534$, a = 23 (or c's value of a used in (b)),
		M1		$d = 9$ (or c's answer to (a)) into $\frac{n}{2}(a+l)$
	{or $\frac{280}{2} [2 \times 23 + (280 - 1)(9)]$ }			PI or $\frac{n}{2} [2a + (n-1)d]$ PI
	= 357 980	A1	2	357 980 NMS mark as B2 or B0
	Total		5	
2(a)	(Area) = $\frac{1}{2}$ (26)(31.5)sin θ	M1		$\frac{1}{2}(26)(31.5)\sin(\theta)$ stated or used
	$\frac{1}{2}(26)(31.5) \times \frac{5}{13} = 157.5 \text{ (cm}^2)$	A1	2	OE eg $\frac{515}{2}$ Condone AWRT 157.50 NMS: 157.5 or AWRT 157.50 scores B2
(b)	$(\cos\theta =)\frac{12}{13}$	B1	1	$\frac{12}{13}$ OE exact fraction
(c)	$\{AC^2=\}$	M1		RHS of cosine rule
	$51.5^{-} + 26^{-} - 2 \times 31.5 \times 26 \times \cos(\theta)$ = 992.25 + 676 - 1512			Correct order of evaluation Do not award
	= 1668.25 - 1512 = 156.25	m1		if evaluation leads to or would lead to RHS value being outside interval 120 to 195
	$AC = \sqrt{156.25} = 12.5 \text{ (cm)}$	A1	3	12.5 OE with no sight of premature approximation clearly used
	(Alternative) { AC^2 =} (26 sin θ) ² + (31.5 - 26 cos θ) ² = 10 ² + 7.5 ²	(M1) (m1)		
	$AC = \sqrt{156.25} = 12.5 \text{ (cm)}$	(A1)	(3)	
	Total		6	

Q	Solution	Marks	Total	Comments
3(a)	$\dots = \left(x^{\frac{3}{2}}\right)^2 - 2x^{\frac{3}{2}} + 1 = x^3 - 2x^{\frac{3}{2}} + 1$	B2,1,0	2	B2 for $x^3 - 2x^{\frac{3}{2}} + 1$ or $x^3 - 2x\sqrt{x} + 1$ (B1 fully correct unsimplified expression. seen eg $\left(x^{\frac{3}{2}}\right)^2 - x^{\frac{3}{2}} - x^{\frac{3}{2}} + 1$
				or B1 for either $x^3 - 2x^{\frac{3}{2}}$ OE seen or $x^3 + 2x^{\frac{3}{2}} + 1$ OE seen or B1 for $-x^3 + 2x^{\frac{3}{2}} - 1$ OE seen)
(b)	$\int \left(x^{\frac{3}{2}} - 1\right)^2 dx = \frac{x^4}{4} - \frac{2x^{\frac{5}{2}}}{2.5} + x \ (+c)$	B1F		Ft on correct integration of all non $x^{\frac{3}{2}}$ terms (at least two) in c's expression. in (a)
		M1		Integration of a $kx^{\frac{3}{2}}$ as $\lambda x^{\frac{5}{2}}$ (ie power correct)
	$\{=0.25x^4 - 0.8x^{2.5} + x(+c)\}\$	A1F	3	Correct integration of c's $x^{\frac{3}{2}}$ term(s) ACF
(c)	$\int_{1}^{4} \left(x^{\frac{3}{2}} - 1\right)^{2} \mathrm{d}x$			
	$= \left(\frac{4^4}{4} - \frac{2(4^{\frac{5}{2}})}{2.5} + 4\right) - \left(\frac{1}{4} - \frac{2}{2.5} + 1\right)$	M1		F(4) - F(1) attempted following integration. If $F(x)$ incorrect, ft c's answer to (b) provided integration attempted
	$\{=\frac{212}{5} - \frac{9}{20} = 42.4 - 0.45\} = 41.95$	A1	2	41.95 OE eg 839/20 Since 'Hence' NMS scores 0/2
	Total		7	

Q	Solution	Marks	Total	Comments
		D 1		
4(a)	$u_1 = 12$	BI		CAO Must be 12
	$u_2 = 48 \times \frac{1}{16} = 3$	B1F	2	If not correct, ft on c's $u_1 \times \frac{1}{4}$
(b)	$r = \frac{1}{4}$	B1F	1	Only ft on $r = (c's \ u_2) \div (c's \ u_1)$ if r < 1. Answers may be in equivalent fraction form or exact decimal form. If other notation used award the mark if correct or ft value confirmed in (c)
(c)	$(S_{\infty} =)\frac{u_1}{1-r} = \frac{12}{1-\frac{1}{4}}$	M1		Use of $\frac{a}{1-r}$, ft on c's u_1 and c's r in (a) and (b) if not recovered, provided $ r < 1$ If not 16, ft on c's u_1 and c's r in (a) and
	= 16	A1F	2	(b) provided $ r < 1$.
(d)	$\sum_{n=4}^{\infty} u_n = S_{\infty} - \sum_{n=1}^{3} u_n$	M1		OE eg RHS $S_{\infty} - (u_1 + u_2 + u_3)$
	$u_3 = \frac{3}{4}$ (or $\sum_{n=1}^{3} u_n = \frac{12(1-0.25^3)}{1-0.25}$)	B1		Either result, or better eg $\sum_{n=1}^{3} u_n = 15.75$
	$\sum_{n=1}^{\infty} u_n = 0.25$	A1	3	NMS scores 0/3
	<i>n</i> =4			<u>SC</u> For c's scoring 0/3 in (d); Award B1 to candidates who used $S_{\infty} - S_4$ for
				$\sum_{n=4}^{\infty} u_n$ and obtained the answer $\frac{1}{16}$ OE
	(Alternative)			
	$\left(\sum_{n=4}^{\infty} u_n = \frac{u_4}{1-r}\right)$	(M1)		
	$(u_4 = \frac{3}{16} \ (= 0.1875))$	(B1)		
	$\left(\sum_{n=4}^{\infty} u_n = \frac{3}{16} \div \frac{3}{4} = \frac{1}{4}\right)$	(A1)	(3)	(NMS scores 0/3)
	Total		8	

Q	Solution	Marks	Total	Comments
5(a)	${Arc =} r\theta$	M1		$r\theta$ seen or used for the arc length
	$= 18 \times \frac{2\pi}{3} = 12\pi$ (m)	A1	2	12π
(b)(i)	$\alpha = \frac{\pi}{3}$	B1	1	$\frac{1}{3}\pi$ OE expression which simplifies to $\frac{1}{3}\pi$
(ii)	{Area of sector =} $\frac{1}{2}r^2\theta = \frac{1}{2} \times 18^2 \times \frac{2\pi}{3}$	M1		$\frac{1}{2}r^2\theta$ seen or used for the sector area
	$= 108 \pi$ (=339.(29))	A1		If not exact accept 3sf or better PI by final correct answer
	$\tan\frac{\pi}{3} = \frac{TP}{18} \{ \text{or } \tan\frac{\alpha}{2} = \frac{18}{TP} \}$			OE Correct method (PI) to find either <i>TP</i> or $TO(-TP)$ or OT or PO or $\stackrel{1}{}PO$. If a pot
	{or $PQ = 2 \times 18 \sin \frac{\pi}{3}$ } {or $\frac{1}{2}PQ = 18 \sin \frac{\pi}{3}$ }	M1		$\pi/3$ then ft c's value for α in (b)(i). If c finds
	π 18 $\left[\alpha$ 18 $\left[\alpha$ 18 $\right]$	INI I		two of <i>TP/TQ</i> , <i>OT</i> and $PQ/\frac{1}{2}PQ$ and gets
	$\left\{ \begin{array}{cc} \text{or} & \cos \overline{3} = \overline{OT} \end{array} \right\} \left\{ \begin{array}{cc} \text{or} & \sin \overline{2} = \overline{OT} \end{array} \right\}$			one correct, one wrong, mark correct one ie M1A1 (M1A0 possible if no correct length)
	$TP=18\sqrt{3} = 31.1769$ exact or 31.1 to 31.2 incl} {or $PQ=18\sqrt{3} = 31.1769$ exact or 31.1 to 31.2 incl} {or $OT = 36$ };	A1		Correct <i>TP</i> or <i>TQ</i> or <i>PQ</i> or $\frac{1}{2}PQ$ or <i>OT</i> either exact value or in range indicated PI by value 561 to 561.3 inclusive for the area of the kite.
	$\left\{\frac{1}{2}PQ = 9\sqrt{3} \text{ or } 15.5 \text{ to } 15.6 \text{ incl}\right\}$ Area of kite $PTQO = 2 \times \frac{1}{2} \times 18 \times TP$ $\left\{\text{or Area} = \frac{1}{2}(18^2)\sin\frac{2\pi}{3} + \frac{1}{2}TP^2\sin\alpha\right\}$ $\left\{\text{or area kite} = \frac{1}{2} \times PQ \times \left[18 \div \cos\frac{\pi}{3}\right]\right\}$ $\left\{\text{or area kite} = \frac{1}{2} \times 2 \times 18\sin\frac{\pi}{3} \times OT\right\}$ $\left\{=18^2\sqrt{3}\right\} \left\{=2 \times 162\sqrt{3}\right\}; \left\{243\sqrt{3} + 81\sqrt{3}\right\}$	M1		OE valid method to find area of kite, down to a correct expression with no more than 1 unknown length; ft on c's value of α . For method using > one unknown length this M is dependent on previous M for length PI by value $324\sqrt{3}$ or a numerical expression which simplifies to $324\sqrt{3}$; or a value 561 to 561.3 inclusive for the area of the kite. Can also be implied by award of the final A1
	Alternative Area triangle $PTQ = \frac{1}{2} TP^2 \sin \alpha$ and Area triangle $POQ = \frac{1}{2} 18^2 \sin(2\pi/3)$ Area of shaded region =	(M1)		OE Alternative: Award this method mark if both area of triangle <i>PTQ</i> (=243 $\sqrt{3}$) and area of triangle <i>POQ</i> (=81 $\sqrt{3}$) are found with or without finding area of kite
	561.(18) $-108 \pi =$ 221.89 = 222 (m ²) to 3sf	A1	6	If not 222, condone value from 221.7 to 222.0 inclusive
	Area of shaded region = $243\sqrt{3} - (108\pi - 81\sqrt{3}) =$ $221.89= 222 \text{ (m}^2) \text{ to } 3\text{ sf}$	(A1)	(6)	
	Total		9	

Q	Solution	Marks	Total	Comments
6(a)(i)	(When $x = 2$) $\frac{dy}{dx} = 12 - 1 - 11 = 0$	B1	1	AG Must see intermediate evaluations
(ii)	$\frac{4}{x^2} = 4x^{-2} \{ \text{so } \frac{dy}{dx} = 3x^2 - 4x^{-2} - 11 \}$	B1		$\frac{4}{x^2} = 4x^{-2}$, seen in (a)(ii) or earlier. PI by $\pm 8x^{-3}$ term in answer
	$d^2 y$ $z = 3$	M1		Correct powers of <i>x</i> correctly obtained from differentiating the first two terms
	$\frac{1}{\mathrm{d}x^2} = 6x + 8x^2$	A1		$6x + 8x^{-3}$ ACF
	When $x = 2$, $\frac{d^2 y}{dx^2} = 12 + 8/8 = 13$	A1	4	
(iii)	Since $\frac{d^2 y}{dx^2} > 0$, <i>P</i> is a minimum point.	E1F	1	Ft on c's value of $y''(2)$ in (a)(ii) but must see reference to sign of $y''(2)$ either explicitly or as inequality, as well as the correct ft conclusion
(b)	$\int \left(3x^2 - \frac{4}{x^2} - 11 \right) dx = x^3 + 4x^{-1} - 11x(+c)$	M1		Attempt to integrate $\frac{dy}{dx}$ with at least two of the three terms integrated correctly
	$(y =) x^3 + 4x^{-1} - 11x (+ c)$	A1		For $x^3 + 4x^{-1} - 11x$ OE even unsimplified
	When $x = 2$, $y = 1 \implies 1 = 8 + 2 - 22 + c$	M1		Substituting. $x = 2$, $y = 1$ into $y = F(x) + c'$ in attempt to find constant of integration, where $F(x)$ follows attempted integration of expression for $\frac{dy}{dx}$
	$y = x^3 + 4x^{-1} - 11x + 13$	A1	4	ACF
	Tatal		10	
	Total		10	

Q	Solution	Marks	Total	Comments
7(a)	$\tan \theta = -1$	B1		
	$\sin^2 \theta = 3\cos^2 \theta$ $\frac{\sin^2 \theta}{\cos^2 \theta} = \tan^2 \theta$	M1		$\frac{\sin\theta}{\cos\theta} = \tan\theta \text{ used on } \sin^2\theta - 3\cos^2\theta$ or forms and solves a correct quadratic in sin or cos and then uses to find $\tan\theta$ $\tan^2\theta = 3$ or $\tan^2\theta - 3 = 0$
	$\tan^2\theta=3$	A1		or $(\tan\theta + \sqrt{3})(\tan\theta - \sqrt{3}) = 0$
	$\tan\theta = \pm\sqrt{3}$	A1	4	or $\tan \theta = \sqrt{3}$ or $\tan \theta = -\sqrt{3}$ Both
(b)	$\tan \theta = -1$, $\tan \theta = \sqrt{3}$, $\tan \theta = -\sqrt{3}$	M1		Uses part (a), at least as far as attempting to solve $\tan \theta = k$, where k is any one of c's values for $\tan \theta$
	$(\theta =) 135^{\circ}, (\theta =) 60^{\circ}, (\theta =) 120^{\circ}$	A2,1,0	3	If not A2 for all three correct, award A1 for two values correct
				Special Case If $\tan^2 \theta = \frac{1}{3}$ in part (a)
				and M1 scored in (a) and in (b) then apply ft in part (b) ie A2F for $\theta = 135^{\circ}$, 30°, 150°. (A1F if two of these ft values)
				Special Case : If M0 then award B1 for any two correct values provided no
				answers in the given interval, deduct 1 mark for each extra in the given interval $1 > 3$
				from any A marks awarded in (b). Ignore any answers outside $0 \le \theta \le 180$
	Total		7	

Q	Solution	Marks	Total	Comments
8(a)	•	B1		Correct shape, curve in 1^{st} two quadrants only, crossing positive <i>y</i> -axis once and asymptotic to negative <i>x</i> -axis.
	(0, 1) 1 0 x	B1	2	Coordinates $(0, 1)$. Accept <i>y</i> -intercept indicated as 1 on diagram or stated as 'intercept = 1' B0 if graph clearly drawn crossing axes at more than one point
(b)(i)	$y^2 - 12 = y$ OE; $7^{2x} - 12 = 7^x$ OE	M1		Eliminates either x or y correctly $1 + \sqrt{49}$
	$(y-4)(y+3)(=0); (7^{x}-4)(7^{x}+3)(=0)$	A1		Correct factors or $y = \frac{1 \pm \sqrt{19}}{2}$ or better or $7^{x} = \frac{1 \pm \sqrt{49}}{2}$ or better
	Since $y (=7^{x}) > 0$, $[y (=7^{x}) \neq -3]$ (there is exactly one point of intersection)	E1		Clear indication that c's negative solution(s) has/have been considered and rejected
	y-coordinate is 4	B1	4	
(ii)	$7^x = 4$ so $x \log 7 = \log 4$ [or $x = \log_7 4$]	M1		OE ft on $7^{x} = k$, where k is positive, to either x log $7 = \log k$ or $x = \log_{7} k$
	x = 0.712(414) = 0.712 to 3SF	A1	2	Condone > three significant figures. If use of logarithms not explicitly seen then score 0/2
	Total		8	
				I.

Q	Solution	Marks	Total	Comments
9 (a)	h = 0.25	B1		PI
	$f(x) = \log_{10} (x^{2} + 1)$ $I \approx h/2 \{\}$ $\{.\} = f(0) + f(1) + 2 [f(0.25) + f(0.5) + f(0.75)]$ $\{.\} =$	M1		OE summing of areas of the 'trapezia'
	$\log 1 + \log 2 + 2 \left[\log \frac{17}{16} + \log \frac{5}{4} + \log \frac{25}{16} \right]$ = 0 + 0.3010 + 2 (0.0263 + 0.0969 + 0.1938)	A1		OE Accept 1sf evidence
	= $0.3010+2(0.317058) = 0.935147$ (I \approx) 0.125 [0.935147] = 0.117 (to 3SF)	A1	4	CAO Must be 0.117
(b)	$\begin{bmatrix} 0\\1\end{bmatrix}$	B1	1	
(c)(i)	$\log_{10}(10x^2) = \log_{10} 10 + \log_{10} x^2$	M1		Condone missing bases for M mark. Accept $\log x^2$ replaced by $2\log x$ in M1 line
	$= 1 + 2\log_{10} x$	A1	2	AG. Bases must be included or statement $\log_{10} 10 = 1$ ' given.
(ii)	$y = 1 + 2\log_{10} x = \log_{10}(10x^2)$	M1		Condone missing bases in (c)(ii) & (c)(iii) PI
	Either $y = 2\log_{10}(\sqrt{10} x)$ (to compare $y = 2\log x$) or both $y = \log_{10} x^2$ and $y = \log_{10}(\sqrt{10} x)^2$	A1		Writing in correct form so that stretch details can be stated directly
	(Stretch) parallel to x-axis, sf $\frac{1}{\sqrt{10}}$ OE	B2,1,0	4	B2 for correct direction and scale factor ACF (B1 for correct exact scale factor ACF) (or B1 for 'x-direction, scale factor 1/10 ') (or B1for 'x-direction, scale factor $\sqrt{10}$ ') Apply ISW if dec follows exact values. (OE scale factor must be in exact form)
(iii)	$\log_{10}(10x^2) = \log_{10}(x^2 + 1)$ (10x ² = x ² + 1, 9x ² = 1	M1		PI by $10x^2 = x^2 + 1$ or correct x
	and since $x > 0$) $x = \frac{1}{3}$	A1		$x = \frac{1}{3}$ OE stated or used; accept $\sqrt{\frac{1}{9}}, \frac{1}{\sqrt{9}}$
	(y-coordinate of P) $y = \log_{10} \frac{10}{9}$ Or $y = \log\left(\frac{1}{9} + 1\right)$	A1		PI by $3\log\frac{10}{9}$ OE for the gradient of <i>OP</i>
	Gradient of $OP =$ $3\log_{10} \frac{10}{9} = \log_{10} \frac{1000}{729}$	A1	4	$\log \frac{1000}{729}$; Accept 'a=1000, b=729'
	Total		15	
	TOTAL		75	

Version

General Certificate of Education (A-level) January 2013

Mathematics

MPC2

(Specification 6360)

Pure Core 2

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$\operatorname{Arc} = r\theta \qquad (= 1.25r)$	M1		Within (a), $r\theta$ or 15 used for the arc length PI
	$\mathbf{P} = r + r + r\theta = 39$	m1		Use of $r + r + r\theta$ for the perimeter. m0 if no indication that '15' comes from $r\theta$.
	$3.25r = 39 \qquad r = \frac{39}{3.25} = 12$	A1	3	CSO AG
(b)	{Area of sector =} $\frac{1}{2}r^2\theta$	M1		Within (b), $\frac{1}{2}r^2\theta$ stated or used for the sector area.
	$= \frac{1}{2} \times 12^2 \times 1.25 = 90 \text{ (cm}^2\text{)}$	A1	2	NMS: 90 scores 2 marks
	Total		5	
2(a)	h = 1	B1		PI
	$f(x) = \frac{1}{x^2 + 1}$			1
	$I \approx \frac{h}{2} \{ f(1) + f(5) + 2[f(2) + f(3) + f(4)] \}$	M1		$\frac{h}{2} \{f(1)+f(5)+2[f(2)+f(3)+f(4)]\}$ OE summing of areas of the four 'trapezia'
	$\frac{h}{2} \text{ with } \{\ldots\} = \frac{1}{2} + \frac{1}{26} + 2\left(\frac{1}{5} + \frac{1}{10} + \frac{1}{17}\right)$ $= 0.5 + 0.03(84) + 2[0.2 + 0.1 + 0.05(88)]$ $= 0.538(46) + 2[0.358(82)] = 1.256(108)$	A1		OE Accept 2dp (rounded or truncated) for non-terminating decs. equiv.
	(I≈) 0.628054 = $\frac{694}{1105}$ = 0.628 (to 3sf)	A1	4	CAO Must be 0.628
	1105			SC for those who use 5 strips, max possible is B0M1A1A0
(b)(i)	$\int \left(x^{-\frac{3}{2}} + 6x^{\frac{1}{2}}\right) dx = \frac{x^{-\frac{1}{2}}}{-1/2} + \frac{6x^{\frac{3}{2}}}{3/2} (+c)$	M1 A1		One term correct (even unsimplified) Both terms correct (even unsimplified)
	$= -2x^{-0.5} + 4x^{1.5} (+c)$	A1	3	Must be simplified.
(ii)	$\int_{1}^{4} \left(x^{-\frac{3}{2}} + 6x^{\frac{1}{2}} \right) dx$	2.41		Attempt to calculate $F(4)-F(1)$ where $F(x)$ follows integration and is not just
	$= [-2(4^{\circ.0}) + 4(4^{\circ.0})] - [-2(1^{\circ.0}) + 4(1^{\circ.0})]$	M1		the integrand
	=(-1+32)-(-2+4)=29	A1	2	Since 'Hence' NMS scores 0/2
	Total		9	

Q	Solution	Marks	Total	Comments
3 (a)	$\frac{1}{2} \times 5 \times 6\sin C = 12.5$	M1		(Area=) $\frac{1}{2} \times 5 \times 6 \sin C$
	sin <i>C</i> =0.833(3)	A1		AWRT 0.83 or 5/6 OE PI by e.g. seeing 56 or better
	(<i>C</i> is obtuse) $C = 123.6^{\circ}$	A1	3	AWRT 123.6
(b)	${AB^2 =} 5^2 + 6^2 - 2 \times 5 \times 6 \cos C$	M1		RHS of cosine rule used
	$= 61 - 60 \times (-0.553) = 94.1(66)$	ml		Correct ft evaluation, to at least 2 sf, of AB^2 or AB using c's value of C.
	(AB =) 9.7 (cm to 2sf)	A1	3	If not 9.7 accept AWRT 9.70 or AWRT 9.71
	Total		6	
4	$\log_a N - \log_a x = \frac{3}{2}$			
	$\log_a \frac{N}{x} = \frac{3}{2}$	M1		A log law used correctly. PI by next line.
	$\frac{N}{x} = a^{\frac{3}{2}}$	m1		Logarithm(s) eliminated correctly
	$x = a^{-\frac{3}{2}}N$	A1	3	ACF of RHS
	Total		3	

Q	Solution	Marks	Total	Comments
5(a)	$\frac{8}{3} = 8x^{-2}$	B1		PI by its derivative as $16x^{-3}$ or $-16x^{-3}$
	$\frac{x^2}{dy} = 2 + 16x^{-3}$	M1		Differentiating either $6+2x$ correctly or differentiating $-8/x^2$ correctly.
		A1	3	$2 + 16x^{-3}$ OE
(b)	At $P(2, 8)$, $\frac{dy}{dx} = 2 + 16 \times 2^{-3}$ (= 4)	M1		Attempt to find $\frac{dy}{dx}$ when $x = 2$
	Gradient of normal at $P = -\frac{1}{4}$	m1		$m \times m' = -1$ used
	Eqn. of normal at <i>P</i> : $y-8 = -\frac{1}{4}(x-2) \implies x+4y = 34$	A1	3	CSO AG
(c)(i)	At St. Pt $\frac{dy}{dx} = 0$, $2 + 16x^{-3} = 0$	M1		Equating c's $\frac{dy}{dx}$ to 0
	$(16x^{-3} = -2)$ $x = -2$	A1		Accept ' $\frac{dy}{dx} = 0$ so $x = -2$ ' stated with no errors seen x = -2
	When $x = -2$, $y = 6-4-2=0$; M(-2,0) lies on <i>x</i> -axis	A1	3	Need statement and correct coords.
(c)(ii)	Tangent at <i>M</i> has equation $y = 0$	B1	1	y = 0 OE
(d)	Intersects normal at <i>P</i> when $x + 0 = 34$	M1		PI Solving c's eqn. of tangent with ans (b) as far as correctly eliminating one variable.
	<i>T</i> (34, 0)	A1	2	Accept $x = 34$, $y = 0$
	Total		12	

	Solution	Marks	Total	Comments
6(a)(i)	$r = \frac{294}{420} = 0.7$	B1	1	AG. Accept any valid justification to the given answer
(ii)	$\{S_{\infty} =\} \frac{a}{1-r} = \frac{420}{1-0.7}$	M1		$\frac{a}{1-r}$ used
	$\{ S_{\infty} = \} 1400$	A1	2	1400 NMS mark as 2/2 or 0/2
(iii)	<i>n</i> th term = $600 \times (0.7)^n$	B2	2	If not B2 award B1 for $420 \times (0.7)^{n-1}$ OE
(b)(i)	$\{u_n = \}248 - 8n$	B1	1	Accept ACF
(ii)	$u_k = 0 \Longrightarrow 8k = 248$	M1		248-8 <i>k</i> =0 OE e.g. 240+(<i>k</i> -1)(-8)=0 ft if no recovery, on c's (b)(i) answer
	<i>k</i> = 31	A1		
	$\sum_{n=1}^{k} u_n = 240 + 232 + \ldots + 0 = \frac{k}{2} [240 + 0]$	M1		For $\frac{k}{2}[240+0]$ or for $\frac{k}{2}[c's u_1 + 0]$
				OE e.g. $\frac{\kappa}{2} [2 \times c' s u_1 + (k-1)(-8)]$
	$\sum_{n=1}^{k} u_n (= 15.5 \times 240) = 3720$	A1	4	3720
	Total		10	

Q	Solution	Marks	Total	Comments
7(a)	Stretch(I) in y-direction(II) scale factor 3(III)	M1		OE Need (I) and either (II) or (III)
		A1	2	All correct. Need (I) and (II) and (III) [>1 transformation scores 0/2]
(b)	5	B1		Shape with indication of correct asymptotic behaviour in 2^{nd} quadrant below pt of intersection with <i>y</i> -axis
	3	B1	2	Only intersection is with y-axis, and only intercept is 3 stated/indicated
(c)	$3 \times 4^x = 4^{-x}$	M1		OE eqn. in x
	$\log 3 + \log 4^x = \log 4^{-x}$	m1		Log Law 1 (or Law 2 applied 4^x 1 or Law 2 applied
				to $\frac{1}{4^{-x}} = 3$ or $\frac{1}{3}$ OE) used correctly or correct rearrangement to $4^{2x} = 1/3$ OE simplified e.g. $16^x = 3^{-1}$ or $4^x = (1/\sqrt{3})$
	$\log 3 + x \log 4 = -x \log 4$	m1		Log Law 3 applied correctly twice (dependent on both M1 & m1) or a correct method using logs to solve an eqn. of form $a^{kx}=b$, $b>0$ (including case $k=1$) (dependent on M1 and valid method to a^{kx})
	$x = \frac{-\log 3}{2\log 4} \qquad \left(=\frac{-\log 3}{\log 16}\right)$	A1		Correct expression for x or for $-x$ e.g. $x = \frac{1}{2} \log_4 \left(\frac{1}{3}\right)$ PI by correct 3sf value or better
	x = -0.396(2406) = -0.396 (to 3sf)	A1	5	If logs not used explicitly then max of M1m1m0.
	Total		9	
<u> </u>	10001	1	-	1

Q	Solution	Marks	Total	Comments
8(a)	$\left(1+\frac{4}{x}\right)^2 = 1+\frac{8}{x}+\frac{16}{x^2}$ (or $1+8x^{-1}+16x^{-2}$)	B1	1	Unsimplified equivalent answers, e.g. $1 + \frac{4}{x} + \frac{4}{x} + \left(\frac{4}{x}\right)^2$ etc. must be correctly simplified in part (c) to one of the two forms in 'solution' to retrospectively score the B1 here
(b)	$\left(1+\frac{x}{4}\right)^8 = \{1+\} \binom{8}{1} \binom{x}{4} + \binom{8}{2} \binom{x}{4}^2 + \binom{8}{3} \binom{x}{4}^3 + \dots$	M1		Any valid method. PI by a correct value for either <i>a</i> or <i>b</i> or <i>c</i>
	$=\{1+\}2x+\frac{7}{4}x^2+\frac{7}{8}x^3+\dots$	A1A1A1		A1 for each of <i>a</i> , <i>b</i> , <i>c</i>
	$\{a = 2, b = 1.75 \text{ OE}, c = 0.875 \text{ OE}\}$		4	SC $a = 8$, $b = 28$, $c = 56$ or a = 32, $b = 448$, $c = 3584$ either explicitly or within expn (M1A0)
(c)	$\left(1 + \frac{8}{x} + \frac{16}{x^2}\right) \left(1 + 2x + \frac{7}{4}x^2 + \frac{7}{8}x^3\right)$	M1		Product of c's two expansions either stated explicitly or used
	x terms from expansion of $\left(1 + \frac{4}{x}\right)^2 \left(1 + \frac{x}{4}\right)^8$ are <i>ax</i> and '8' <i>bx</i> and '16' <i>cx</i>	m1		Any two of the three, ft from products of non-zero terms using c's two expansions. May just use the coefficients.
	ax + `8'bx + `16'cx	A1F		Ft on c's non-zero values for a, b and c and also ft on c's non-zero coeffs. of $1/x$ and $1/x^2$ in part (a). Accept x's missing i.e. sum of coeffs. PI by the correct final answer.
	Coefficient of x is $2+14+14 = 30$	A1	4	OE Condone answer left as $30x$. Ignore terms in other powers of x in the expansion.
	Total		9	

Q	Solution	Marks	Total	Comments
9(a)	$x + 30^{\circ} = 79^{\circ}, x + 30^{\circ} = 180^{\circ} + 79^{\circ}$			
	$x = 49^{\circ}$	B1		49 as the only solution in the interval $0^{\circ} \le x < 90^{\circ}$
	$x = 229^{\circ}$	B1		AWRT 229. Not given if any other
			2	soln. in the interval $90^{\circ} \le x \le 360^{\circ}$. Ignore anything outside $0^{\circ} \le x \le 360^{\circ}$
(b)	Translation;	B1		Accept 'translat' as equivalent. [T or Tr is NOT sufficient]
	$\begin{bmatrix} -30^{\circ} \end{bmatrix}$	B1		OE Accept full equivalent to vector in words provided linked to
				'translation/ move/shift' and correct
			2	direction. $(0/2 \text{ if } >1 \text{ transformation}).$
(C)(1)	$5 + \sin^2 \theta = (5 + 3\cos\theta)\cos\theta$			
	$\Rightarrow 5 + \sin^2 \theta = 5\cos\theta + 3\cos^2\theta$	B1		Correct RHS.
	$5 + 1 - \cos^2 \theta = 5\cos\theta + 3\cos^2 \theta$	M1		$\sin^2 \theta = 1 - \cos^2 \theta$ used to get a quadratic in $\cos \theta$.
	$6 = 5\cos\theta + 4\cos^2\theta \text{ or } 4\cos^2\theta + 5\cos\theta - 6 (= 0)$	A1		ACF with like terms collected.
	$\Rightarrow (4\cos\theta - 3)(\cos\theta + 2) (=0)$	m1		Correct quadratic and $(4c\pm3)(c\pm2)$ or by formula OE PI by 'correct' 2 values for $\cos\theta$.
	Since $\cos\theta \neq -2$, $\cos\theta = \frac{3}{4}$	A1	5	CSO AG. Must show that the 'soln' $\cos \theta = -2$ has been considered and rejected
(ii)	$5 + \sin^2 2x = (5 + 3\cos 2x)\cos 2x$			
	$\Rightarrow \cos 2x = \frac{3}{4}$	M1		Using (c)(i) to reach $\cos 2x = \frac{3}{4}$ or finding at least 3 solutions of $\cos \theta = \frac{3}{4}$ and dividing them by 2.
	$2x = 0.722(7), \ 2\pi - 0.722(7), 2\pi + 0.722(7), \ 4\pi - 0.722(7),$	m1		Valid method to find all four 'positions' of solutions.
	<i>x</i> = 0.361 , 2.78 , 3.50, 5.92	A1	3	CAO Must be these four 3sf values but ignore any values outside the interval $0 < x < 2\pi$.
	Total		12	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) June 2013

Mathematics

MPC2

(Specification 6360)

Pure Core 2

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1 (a)	20	B1	1	20
(b)	$\{S_{\infty} =\} \frac{a}{1-r} = \frac{80}{1-\frac{1}{r}}$	M1		$\frac{a}{1-r}$ used with $a = 80$ and $r = 0.5$ OE
	$\{S_{\infty}=\}160$	A1	2	NMS 160 gets 2 marks unless rounding seen
(c)	$\{S_{12} =\} \frac{80(1-r^{12})}{1-r} = 160(1-0.5^{12})$	M1		$\frac{80(1-r^{12})}{1-r}$ seen (or used with r=0.5 OE)
	= 159.96(0937.) = 159.96 to 2dp	A1	2	Condone > 2dp
	Total		5	
2(a)	{Arc =} $r\theta$ = 20 × 0.8 = 16 (cm)	M1 A1	2	$r\theta$ seen in (a) or used for the arc length
(b)	{Area of sector =} $\frac{1}{2}r^2\theta = \frac{1}{2} \times 20^2 \times 0.8$	M1		$\frac{1}{2}r^2\theta$ OE seen in (b) or used for the area
	$\dots = 160 \ (cm^2)$	A1	2	
(c)	{Let <i>D</i> = angle <i>ODB</i> } $\frac{20}{\sin D} = \frac{15}{\sin 0.8}$	M1		Sine rule, ACF with sin <i>D</i> being the only unknown PI by next line
	$\sin D = \frac{20 \times \sin 0.8}{15} \left\{ = \frac{14.3(471)}{15} \right\}$ $\left\{ = \frac{20}{20.9(10)} \right\} = 0.956(474)$ Acute 'D' = 1.27(467)	m1		Correct rearrangement to 'sin $D =$ ' or to ' $D = \sin^{-1} ()$ ' OE. PI by at least 3sf correct value 1.27(467) radians or 73(.033)° for acute angle or PI by at least 3sf value 1.86(692) rounded or truncated for D .
	$D = \pi$ – Acute 'D' in rads	m1		Dep on previous 2 marks being awarded. PI by correct ft evaluation of π -c's acute D to at least 3 sf value or seeing 1.86(692), rounded or truncated, for D
	$\{\text{Angle ODB}\} = 1.87 \{\text{to 3sf}\}$	A1	4	Condone >3sf.
	Total		8	

Q	Solution	Marks	Total	Comments
3(a)(i)	$\{(2+y)^3=\}$ 8+12y+6y ² + y ³	M1		At least 3 terms simplified and correct
		A1	2	All correct
(ii)	$(2+x^{-2})^3 = 8+12x^{-2}+6(x^{-2})^2+(x^{-2})^3$	M1		A replacement of y by x^{-2} in c's (a)(i) working. PI
	$(2-x^{-2})^3 = 8-12x^{-2}+6(x^{-2})^2-(x^{-2})^3$	A1F		Ft one incorrect coefficient in (a)(i) expansion.
	$(2 + r^{-2})^3 + (2 - r^{-2})^3 = 16 + 12r^{-4}$	A1	3	CSO Be convinced.
	(2+x) + (2-x) = 10 + 12x			SC2 for a fully correct solution, not using 'Hence'
(b)(i)	$\int \left[\left(2 + x^{-2} \right)^3 + \left(2 - x^{-2} \right)^3 \right] dx = 16x - 4x^{-3} (+c)$	M1		Valid method to obtain the correct power of x after integrating qx^{-4} .
		A1F	2	$16x - 4x^{-3}$ or $16x - 4/x^3$ condone missing '+c'. Ft on c's p and q values. Coefficients and signs must be simplified
(ii)	$\int_{1}^{2} \dots dx = [16(2) - 4(2^{-3})] - [16 - 4]$	M1		F(2)–F(1) following integration (b)(i)
	= 31.5 - 12 = 19.5	A1F	2	OE Ft on c's positive integer values of p and q . Since 'Hence' NMS scores $0/2$
	Total		9	
4(a)	5	B1		Correct graph, must clearly go below the intersection pt and an indication of correct behaviour of curve for large positive and large negative values of <i>x</i> . Ignore any scaling on axes.
		B1	2	Only one <i>y</i> -intercept, marked/stated as 1 or as coords (0, 1) with graph having no other intercepts on either axes.
(b)	$9^x = 15 \implies x \log 9 = \log 15$	M1		OE eg $x = \log_9 15$
	(<i>x</i> =) 1.23(2486) = 1.23 to 3sf	A1	2	Condone > 3sf. Must see evidence of logs used so NMS scores 0/2
(c)	${f(x) =} 9^{-x}$	B1	1	OE
	Total		5	

0	Solution	Marks	Total	Comments
5(a)	h = 0.5 f(x) = $\sqrt{8x^3 + 1}$	B1		h = 0.5 stated or used.
	$I \approx \frac{h}{2} \{ f(0) + f(2) + 2[f(0.5) + f(1) + f(1.5)] \}$	M1		$I \approx \frac{h}{2} \{f(0)+f(2)+2[f(0.5)+f(1)+f(1.5)]\}$ OE
	$\frac{h}{2} \text{ with } \{\dots\} = \sqrt{1} + \sqrt{65} + 2\left(\sqrt{2} + \sqrt{9} + \sqrt{28}\right)$ $= 1 + 8.06 + 2(1.41+3 + 5.29)$ $= 9.0622+2 \times 9.7057$	A1		OE Accept 1dp evidence. Can be implied by later correct work provided more than one term or a single term which rounds to 7.12
	$(I \approx) 0.25[28.47] = 7.118 = 7.12 (to 3sf)$	A1	4	CAO Must be 7.12
(b)	Stretch(I) in <i>x</i> -direction(II) scale factor 2 (III)	M1		Need (I) and either (II) or (III)
		A1	2	Need (I) and (II) and (III) More than 1 transformation scores 0/2
(c)	$g(x) = \sqrt{(x-2)^3 + 1} - 0.7$	M1		$\sqrt{(x-2)^{3} + 1} - 0.7$ or $\sqrt{(x-2)^{3} + 1} + 0.7$ or $\sqrt{(x+2)^{3} + 1} - 0.7$ or $\sqrt{(x-2)^{3} + 1} - 0.7$ or their equivalents
		A1		$\sqrt{(x-2)^3+1} - 0.7$ OE
	g(4) = 2.3	A1	3	2.3 OE
	<u>Altn</u>			
	(4,) on $y = g(x)$ comes from translating (2, 3) on $y = \sqrt{x^3 + 1}$	(M1)		from (2,) on $y = \sqrt{x^3 + 1}$
	(-, -, -, -, -, -, -, -, -, -, -, -, -, -	(A1)		from (2, 3) on $y = \sqrt{x^3 + 1}$
	(2, 3) after translation becomes (4, 2.3) so $g(4) = 2.3$	(A1)	(3)	2.3 OE
	Total		9	

Q	Solution	Marks	Total	Comments
6(a)	$\sqrt{x} = x^{0.5}$ $12 + x^2 \sqrt{x}$ $12 + x^{2.5}$	B1		$\sqrt{x} = x^{0.5}$ or $\sqrt{x} = x^{\frac{1}{2}}$ seen or used
	$\frac{x}{x} = \frac{x}{x}$ = 12x ⁻¹ + x ^{1.5}	B1		$12x^{-1}$ or $p = -1$
		B1	3	$x^{1.5}$ or $q = \frac{3}{2}$ (=1.5)
(b)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -12x^{-2}$	B1F		Ft on c's p only if c's p is a negative integer
	$+1.5x^{0.5}$	B1F	2	Ft on c's q only if c's q is a pos non- integer
(ii)	When $x = 4$, $y = 11$	B1		
	When $x = 4$, $\frac{dy}{dx} = \frac{-12}{16} + 3 = \frac{9}{4}$	M1		Attempt to find $\frac{dy}{dx}$ when $x = 4$ PI
	Gradient of normal = $-\frac{4}{9}$	m1		$m \times m' = -1$ used
	Eqn of normal: $y - 11 = -\frac{4}{9}(x - 4)$	A1	4	ACF eg $4x + 9y = 115$
(iii)	At St Pt $\frac{dy}{dx} = -12x^{-2} + 1.5x^{0.5} = 0$	M1		Equating c's $\frac{dy}{dx}$ to zero.
	$\Rightarrow x^2 x^{0.5} = 8, \Rightarrow x^{\frac{5}{2}} = 8 \Rightarrow x = 8^{\frac{2}{5}}$	A1		A correct eqn in the form $x^n = c$ or $x = c^{\frac{1}{n}}$ correctly obtained.
	$\Rightarrow x = (2^3)^{\frac{2}{5}} \Rightarrow x = 2^{\frac{6}{5}}$	A1	3	CSO $x = 2^{\frac{6}{5}}$. All working must be correct and in an exact form. If 'x=0' also appears then A0 CSO
			12	

Q	Solution	Marks	Total	Comments
7(a)	72 = 96 p + q 24 = 24 p + q	M1 M1		OE
	48 = 72 <i>p</i>	m1		Valid method to solve the correct two simultaneous eqns in $p \text{ and } q$ to at least the stage $48 = 72p$ OE
	$p\left(=\frac{48}{72}\right)=\frac{2}{3}$	A1	4	AG CSO
(b)	q = 8	B1		Award if seen at any stage in Q7
	$u_3 = 48 + q$ ($u_3 =$) 56	B1F	2	If not 56, ft on $(48 + c's q)$ provided at least M1 scored in part (a).
	Total		6	
8 (a)	$b = a^c$	B1	1	
(b)	$2\log_{2}(x+7) - \log_{2}(x+5) = 3$ $\log_{2}(x+7)^{2} - \log_{2}(x+5) = 3$	M1		A law of logs used correctly on a correct expression.
	$\log_2 \frac{(x+7)^2}{x+5} = 3$	M1		A further correct use of law of logs on a correct expression.
	$= 3\log_2 2 = \log_2 2^3$ $\Rightarrow \frac{(x+7)^2}{x+5} = 2^3$	B1		3=3log ₂ 2 or 3 = log ₂ 2 ³ (= log ₂ 8) seen or eg log f(x) = 3 \Rightarrow f(x) =2 ³ (=8) OE
	$\Longrightarrow (x+7)^2 = 8(x+5)$	A1		Correct equation having eliminated logs and fractions
	$\Rightarrow x^{2} + 14x + 49 = 8x + 40$ $\Rightarrow x^{2} + 6x + 9 (= 0)$	A1		
	Since $6^2 - 4(1)(9) = 0$, (there is only) one value of <i>x</i> (which satisfies the given equation).	A1	6	OE CSO Need conclusion which is also correctly justified
	Total		7	
•				•

Q	Solution	Marks	Total	Comments
9(a)(i)	Y ▲ , }			Ignore any part of the graph drawn outside interval $0^{\circ} \le x \le 360^{\circ}$ in (a)
		B1		A 3 branch curve between 0 and 360 meeting the <i>x</i> -axis at or very close to 0, 180, 360 only
	0 90° 180° 270° 360° x	B1		A 3 branch curve between 0 and 360 with correct shape tending to infinity at, at least 3, of the 4 relevant ends
		B1	3	Correct graph for $0^{\circ} \le x \le 360^{\circ}$, with correct intercepts. Asymptotes not explicitly required but graphs should show correct 'tendency' close to 90 and 270.
(ii)	135°; 315°	B2,1,0	2	B2 for both 135 and 315 and no 'extras' in interval $0^{\circ} \le x \le 360^{\circ}$ (If not B2 then award B1 for either 135 or 315 with or without extras)
(b)(i)	$6 \tan \theta \sin \theta = 5 \implies 6 \frac{\sin \theta}{\cos \theta} \sin \theta = 5$	M1		$ \tan \theta = \frac{\sin \theta}{\cos \theta} \text{ used} $
	$6\frac{\sin^2\theta}{\cos\theta} = 5 \implies 6\frac{1-\cos^2\theta}{\cos\theta} = 5$	m1		$\sin^2 \theta$ replaced by $1 - \cos^2 \theta$ throughout
	$6 - 6\cos^2 \theta = 5\cos\theta \implies 6\cos^2 \theta + 5\cos\theta - 6 = 0$	A1	3	Completion AG Be convinced
(ii)	$6\tan 3x\sin 3x = 5 \implies 6\cos^2 3x + 5\cos 3x - 6 = 0$	M1		Using (b)(i) with $\theta = 3x$ PI by attempting to solve eg for theta then dividing soln(s) by 3
	$(3\cos 3x - 2)(2\cos 3x + 3)$ (=0) $(\cos 3x = 2/3, -3/2)$	m1		Correct factorisation or correct subst into the quadratic formula PI by two 'correct' roots
	$\cos 3x = \frac{2}{3} = \cos 48.1(89) \ [= \cos \alpha]$ $3x = \alpha, \ 360 - \alpha, \ 360 + \alpha.$	m1		Dep on M1 only, $3x = \alpha$, $360-\alpha$, $360+\alpha$ for c's α . from an eqn $\cos 3x = k$ where -1 < k < 1 OE PI and no solns from k outside $-1 \le k \le 1$
	$x = 16^{\circ},$ 104°, 136°	B1 B1 B1	6	AWRT 16, 104, 136. Deduct one mark (from any award of these 3 B marks) if more than three solns given inside the interval $0^{\circ} \le x \le 180^{\circ}$. Ignore any solutions outside the interval $0^{\circ} \le x \le 180^{\circ}$. NMS Max, is B3/6
	Total		14	
	TOTAL		75	

A-LEVEL MATHEMATICS

Pure Core 2 – MPC2 Mark scheme

6360 June 2014

Version/Stage: Final V1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.
Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment	
1(a)	(Area =) $\frac{1}{2} \times 5 \times 12 \times \sin 47$ = 21.94 = 22 (cm ²)	M1 A1	2	$\frac{1}{2} \times 5 \times 12 \times \sin A \text{ stated or used}$ Correct area. If not 22 condone 21.9 NMS 22 or 'better' scores 2 marks	
(b)	$(BC^{2} =) 5^{2} + 12^{2} - 2 \times 5 \times 12 \times \cos 47$ = 25 + 144 - 81.8(39) (=87.16)	M1 m1	2	RHS of cosine rule used correctly Correct evaluation of the three terms. PI by eg evaluation to a value 87 to 88 inclusive or correct final answer	
	BC = 9.3(359) = 9.3 (cm)	A1	3	If not 9.3 accept 9.34 or 9.33 or 9.33	
	Total		5		
(a) (a)(b) (b) (b)	Condone absent/incorrect units throughout this question. Candidates who find a perpendicular height do not score the M1 until 1/2base×height used ie the equivalent of $\frac{1}{2} \times 5 \times 12 \times \sin A$. Cand who uses 47 rads can score a max of (a) M1A0 (b) M1m0A0 Example: 169 -120 cos47 (M1) = 49cos47 (m0) = 33.4 $5^2 + 12^2 - 2 \times 5 \times 12 \times \cos 47$ (M1); (BC=) 9.33 (m1A1)				

Q	Solution	Mark	Total	Comment	
2(a)	$\int \left(1+3x^{\frac{1}{2}}+x^{\frac{3}{2}}\right) dx = x+2x^{1.5}+\frac{2}{5}x^{2.5}(+c)$	B1; B1 B1	3	ACF B1 for each correct term. Condone missing $+c$. (Can be left unsimplified)	
(b)(i)	(n =) 3	B1	1	Correct value of <i>n</i> . Condone $3y^2$,	
(b)(ii)	$(1+\sqrt{x})^3 = 1+3\sqrt{x}+3\sqrt{x}^2+\sqrt{x}^3$	B1F	1	Correct four term expansion ft c's <i>n</i> . Allow 'correct' alternatives eg $1+3x^{1/2}+"3"x+x^{3/2}$	
(c)	$\int \left(1 + \sqrt{x}\right)^3 dx = \int \left(1 + 3x^{\frac{1}{2}} + "3" x + x^{\frac{3}{2}}\right) dx$ $= x + 2x^{1.5} + \frac{"3" x^2}{2} + \frac{2}{5}x^{2.5} (+c)$ $\int \left(1 + \sqrt{x}\right)^3 dx =$	B1F		Correct integration. If not correct, ft on c's answer to (a) + $\frac{nx^2}{2}$ for c's value of <i>n</i> in (b)(ii).	
	${}^{0}_{1+2(1)^{1.5}+\frac{3(1)^{2}}{2}+\frac{2}{5}(1)^{2.5}-(0)}_{40}$	M1		PI Attempt to find $F(1)-F(0)$ following 'attempt' at integration. Condone the '-(0)' missing if cand's $F(x)$ leads to $F(0)=0$.	
	$=\frac{49}{10}$ (= 4.9)	A1	3	OE correct value. NMS ie 4.9 without any other work in (c) scores 0/3	
	Total		8		
(c) (c)	Apply ISW after a correct answer but do not award the B1F in (c) if, for example, an incorrect simplification in (a) has been used in (c) and marked as $3/3$ ISW in (a). Allow M1 PI if cand. has evaluated $F(1) - F(0)$ correctly for their $F(x)$, following integration. If 4.9 follows from incorrect working then A0 FIW				

Q	Solution	Mark	Total	Comment
3(a)	$\{S_{\infty} =\} \frac{a}{1-r} = \frac{54}{1-\frac{8}{9}}$	M1		$\frac{a}{1-r}$ used with a=54 and r= 8/9 OE
	$\{S_{\infty}=\}486$	A1	2	Correct exact value for S_{∞} . 486 scores 2 marks unless rounding of a value to 486 seen in which case M1A0.
(b)	$\{2nd term =\} ar = 48$	B1	1	Correct value for 2nd term
(c)	$\{12\text{th term} =\} ar^{12-1}$	M1		ar^{12-1} stated or used. PI by 14.7(8)
	$= 54 \times \left(\frac{8}{9}\right)^{11} = 2 \times 3 \times 3 \times 3 \times \left(\frac{2 \times 2 \times 2}{3 \times 3}\right)^{11}$	ml		Changing at least two of 54 and 8 and 9 in correct expression to correct products/powers of 2 and 3
	$=\frac{2\times 3^{3}\times (2^{3})^{11}}{(3^{2})^{11}}$			
	$=\frac{3^3\times 2^{34}}{3^{22}}=\frac{2^{34}}{3^{19}} (p=34, q=19)$	A1	3	Showing 12th term = $\frac{2^{34}}{3^{19}}$ in a convincing
	Total		6	manner
(2)	Accept 0.8 or 0.9 or better as an OE to $8/9$ or	r 0 2 or 0	1 or bette	$\frac{1}{1-8/9}$ but <i>a</i> must be 54 (No MR)
(a)		1 0.2 01 0	.1 of bette	
(c)	$54 \times \frac{8^{11}}{9}$ (M1)			
(c)	$54 \times \left(\frac{8}{9}\right)^{11}$ (M1) = $54 \times \left(\frac{8}{3^3}\right)^{11} = 2 \times 3 \times$	$3 \times 3 \times \left(-\frac{1}{2}\right)$	$\frac{2 \times 2 \times 2}{3^3}$) ¹¹ (m1) since 54 and 8 have been written
	as correct products of 2 and 3 starting with a	a correct e	expression	h, $54 \times \left(\frac{8}{9}\right)^{11}$.

Q	Solution	Mark	Total	Comment
4(a)	$\frac{1}{x^2} = x^{-2}$	B1		$\frac{1}{x^2} = x^{-2}$. PI by its correct derivative
	x^{2} $(y = \frac{1}{x^{2}} + 4x)$ $(\frac{dy}{dx} =) -2x^{-3} + 4$	M1		Correct differentiation of either $\frac{1}{r^2}$ or $4x$
		A1	3	Correct $\frac{dy}{dx}$ ACF
(b)	When $x = -1$, $\frac{dy}{dx} = -2(-1)^{-3} + 4$ (= 6)	M1		Attempt to find the value of $\frac{dy}{dx}$ when $x = -1$
	Gradient of normal $= -\frac{1}{6}$	ml		Correct use of $m \times m' = -1$, with c's value of $\frac{dy}{dx}$ when $x = -1$
	(For of normal) $y + 3 = -\frac{1}{2}(x+1)$	A1F	3	A correct ft equation for normal with signs
	$\begin{pmatrix} 1 & 1 & 1 \\ 0 $			simplified; ft on c's $\frac{dy}{dx}$ expression in (a)
				SC $\frac{dy}{dx}$ = const in (a), mark (b) as M1A1F
				eg for $\frac{dy}{dx}$ =4 in (a); grad of normal = $-\frac{1}{4}$
				(M1), eqn $y + 3 = -\frac{1}{4}(x+1)$ (A1F)
(c)	$-2x^{-3}+4=-12$	M1		C's answer to (a) equated to -12 (or to 12) seen or used.
	$x^{-3} = 8$	A1F		PI Correct rearrangement of
				$ax^{-n} + b = \pm 12$ or $\frac{a}{x^n} + b = \pm 12$ OE to
				form $x^{-n} = q$ or to form $x^n = p$, but only
	<i>x</i> = 0.5	A1		ft in case of <i>n</i> positive x = 0.5 OE
	When $x = 0.5$, $y = 6$	A1F		Correct ft y coordinate from $y_c = x_c^{-2} + 4x_c$. Only ft if values are exact.
	(Eqn of tangent) $y-6 = -12(x-0.5)$ (or eg $y = -12x+12$)	A1	5	Correct tangent equation ACF Apply ISW after ACF
	Total		11	
(a)	Rearrange to $\frac{1+4x^3}{x^2}$ and then use quotient	rule ($\frac{\pm v}{-}$	$\frac{u'\pm uv'}{v^2}$)]	M1; A1(for correct v^2 and a correct term in
	the numerator); A1 (Correct $\frac{dy}{dx}$ ACF)			
(b)	Final answer as $y - (-3) = -\frac{1}{6}(x - (-1))$ is	M1m1A0) as signs	not simplified.
(c)	Apply the PI only for the correct value of x is i.e. $-2x^{-3} + 4 = -12$, $x = \frac{1}{2}$ (M1A1FA1)	with a cor	rect M1 e	equation seen

Q	Solution	Mark	Total	Comment
5	(Area of sector) = $\frac{1}{2}r^2\theta$	M1		$\frac{1}{2}r^2\theta$ seen, or used, for the sector area
	$\frac{1}{2}r^2\theta = 12$	A1		$\frac{1}{2}r^2\theta = 12$ OE
	(Arc length) = $r\theta$	M1		$r\theta$ seen, or used, for the arc length
	$r + r + r\theta = 4 r\theta$	m1		$r + r + r\theta = 4 r\theta$ OE in terms of r and
	$3r\theta = 2r \implies \theta = \frac{2}{3}$	A1		θ or used with their value of $r\theta$. $\theta = \frac{2}{3}$. Condone 0.66 or 0.67 or better
				P1 by eg $\frac{-r^{2}}{3}$ = 12 OE
	$\frac{1}{3}r^2 = 12 \implies r = 6$	A1	6	r = 6 only with no evidence of a value seen being rounded to 6.
	Total		6	
	Example: $\frac{1}{2}r^2\theta = 12 \text{ (M1A1)} r\theta = 4 r\theta \text{ (M1M1)}$ Example: $r + r + r\theta = 4 r\theta \text{ (M1m1)} \theta = 0$ Example: $\frac{1}{2}r^2\theta = 12 \text{ (M1A1)} 2r + r\theta = 4$ $2r^2 = 72 \text{ (A1)} \Rightarrow r = \pm 6 \text{ (A1)}$	M1m0) .67 (A1) <i>rθ</i> (M1 = .0, since –	$r^2\theta = 12$ m1) $2r^2 - 6$ still pre	2 (M0A0) + $r^2 \theta = 4 r^2 \theta$, $2r^2 + 24 = 96$, esent)

Q	Solution	Mark	Total	Comment		
6(a)	y 1 0 -1 90° 180° 270° 360° x	B2,1,0	2	Ignore parts of graph outside $0^{\circ} \le x \le 360^{\circ}$. B2: Correct graph including correct intersections and stationary points at/close to 90° and 270° with correct y values, 1 and -1 stated. If not B2 then award B1 for correct shape graph with either (i) at least 4 of the 5 critical points (intersections and stationary points) having x-coords. drawn within tolerance or (ii) at least 3 of the 5 critical points (intersections and stationary points) having x-coords. drawn within tolerance and y values, 1 and -1 stated for max and min respectively		
(b)	Stretch (I) in x-direction (II) scale factor $\frac{1}{5}$ (III)	M1 A1	2	Need (I) and either (II) or (III) Need (I) and (II) and (III) More than one transformation scores 0/2.		
(c)	Translation $\begin{bmatrix} -2^{\circ} \\ 0 \end{bmatrix}$	E2,1,0	2	E2: 'translat' and $\begin{bmatrix} -2\\0 \end{bmatrix}$ OE. If not E2 award E1 for either 'translat 2 in x-dir' OE. or 'translat' and $\begin{bmatrix} -10\\0 \end{bmatrix}$ OE.		
	Total		6	More than one transformation scores 0/2.		
(a)	Iotal6For guidance, 'close to' means max pt is vertically above any part of the printed '90°' and min pt is vertically below any part of the printed '270°'. As a guideline, generally accept graph through 180 and 360 if graph goes through the printed x-axis markers at these points.					
(b)	<u>Stretch</u> by $\underline{0.2}$ in \underline{x} (direction) is sufficient	for M1A	1. Accept	'horizontal' in place of 'x'		
(c)	<u>Lots of "correct" answers:</u> eg translate 70° in x-direction {in fact any translation of $-2 \pmod{72}$ ° in x-direction would be correct} eg reflect in x=17° {in fact any reflection in x=17(mod36)° would be correct}					
(c)	Examples: 'translate horizontally 2' scores E1; 'translating horizontally -2' scores E2; 'translated 2 in negative x' scores E2					

Q	Solution	Mark	Total	Comment	
7(a)	$\cos^2 x + 4\sin^2 x - \cos^2 x + 4\sin^2 x$ (-7)	M1		A correct use of identity $\sin^2 x + \cos^2 x = 1$	
	$\frac{1-\sin^2 x}{1-\sin^2 x} = \frac{1-\cos^2 x}{\cos^2 x} $				
	$(1 + \frac{4\sin^2 x}{\cos^2 x} = 7); \Rightarrow 1 + 4\tan^2 x = 7$	ml		Correct use of identity $\tan^2 x = \frac{\sin^2 x}{\cos^2 x}$ to	
	$\Rightarrow 4 \tan^2 x = 6 \Rightarrow \tan^2 x = \frac{3}{2}$	A1		obtain a correct equation in $\tan^2 x$ only. AG $\tan^2 x = \frac{3}{2}$ obtained convincingly	
			3		
(b)	$\tan^2 2\theta = \frac{3}{2}$	M1		Using printed answer to part (a).	
	2			PI by either $\tan 2\theta = \sqrt{\frac{3}{2}}$ or $\tan 2\theta = -\sqrt{\frac{3}{2}}$	
				or later equivalent work	
	$\tan 2\theta = \pm \sqrt{\frac{3}{2}} = \pm 1.22(47),$	A1		$\tan 2\theta = \pm \sqrt{\frac{3}{2}} \text{ OE Must see the } \pm$	
	$(\theta =) 25^{\circ}, 65^{\circ}, 115^{\circ}, 155^{\circ}$	B2,1,0		B2: All 4 integer values correct. If not B2 award B1 for 2 AWRT correct	
				integer values. If more than 4 solutions inside given interval deduct 1 mark (to min of B0) for	
				each extra solution.	
			4	Ignore values outside given interval	
(a)	$\frac{1}{1}$	ain ² 1 1. au	7	for 1 tor ² .	
(a)	Afth. Finding value for $\cos x$ and value for Example: $\cos^2 x + 4\sin^2 x = 7(1 - \sin^2 x)$;	$1 + 2 \sin^2 x$	$r = 7(1 - \alpha)$	$\sin^2 x$ (M1): $10\sin^2 x - 6 \cdot \sin^2 x - 2/5$:	
	Example: $\cos x + 4 \sin x = 7(1 - \sin x)$,	2/5	x = 7(1 - 5)	$x = 0, \sin x = 0, \sin x = 3/5,$	
	So $\cos^2 x = 1 - 3/5 = 2/5$; $\tan^2 x = \frac{\sin^2 x}{\cos^2 x}$	$=\frac{3/3}{2/5}$ (r	$(n1) = \frac{3}{2}$	(A1)	
(d)	Eg. $\tan 2\theta = \sqrt{\frac{3}{2}}$ (M1); $\theta = 25.4$, 115.4 (1)	B1)			
	Example showing the M1 PI $\tan x = \sqrt{\frac{3}{2}}$; x=50.76, 230.76; (no marks yet) $\theta = 25.4, 115.4$ (M1B1)				
	Cand solving $\tan x = 3/2$ and dividing answers for x by 2 will score $0/4$ since not taken sq root.				
	Candidate who solves $\tan^2 x = \frac{3}{2}$ without e	ver linking	g it with 2	$\mathcal{L}\theta$ (eg by dividing answers for <i>x</i> by 2) will	
	score 0/4.				

Q	Solution	Mark	Total	Comment	
	5	M1		5	
0(0)	$[S_5=] \frac{3}{2} [2a + (5-1)d]$			$\left[\frac{5}{2}[2a+(5-1)d]\right]$ OE	
	$\frac{5}{2} [2a + (5-1)d] = 575; \ 5(2a+4d) = 575 \times 2$	ml		Forming correct eqn and attempt to remove fraction or expand brackets or better	
	$2a + 4d = 115 \times 2 \implies a + 2d = 115$	A1	3	AG $a + 2d = 115$ convincingly obtained	
(b)	a + (10-1)d = 87	M1		87 = a + (10-1)d OE	
	$a + 2d = 115, a + 9d = 8/ \Rightarrow /d = 8/-115$	ml		Solving $a + 2d = 115$ simultaneously with $a + 9d = 87$ as far as eliminating either a or d	
	7d = -28, d = -4	A1	3	d = -4	
(c)	When $d = -4$, $a = 123$	B1F		Correct value of <i>a</i> or correct ft value for <i>a</i> . Ft only on $a = 115 - 2 \times \text{cand's } d$	
	$u_k = 123 + (k-1)(-4) > 0$				
	$u_{k+1} = 123 + (k)(-4) < 0$	M1		Either inequality, ft c's values for <i>a</i> and <i>d</i> .	
				Condone equality and also n written for k .	
	$k < 31.75, k > 30.75 \implies k = 31$	E1		Justification of $k=31$ with no errors seen in relevant working and $k=31$ stated or	
	$\frac{31}{31}$ 31 c 1			$\frac{31}{31}$ 31 c	
	$\sum_{n=1}^{n} u_n = \frac{3}{2} [2a + (31 - 1)d]$	M1		$\sum_{n=1}^{\infty} u_n = \frac{34}{2} [2a + (31-1)d]$ OE Must be	
				using 31 for n .	
	= 1953	A1	5	$\sum_{n=1}^{k} u_n = 1953$ dep. on previous B1FM1M1	
				ⁿ⁼¹ being awarded	
	Total		11		
(b)	Cand who recognises (a) answer as 3rd term	n = 115:	115+7 <i>d</i> =8	87 (M1m1) $d = -4$ (A1)	
(c)	Can award the B1F for the value of a if seen in (b) with no contradiction in (c).				
(c)	Examples sufficient for the E1: $123 + (k$	-1)(-4) >	0, k < 31	$1.75, \Rightarrow k = 31 \text{ (E1)};$	
	$123 + (k)(-4) < 0, \ k > 30.75 \Rightarrow k=31$ (E1);				
	(T&I approach) M1 for either $u_{31} = 3$ or $u_{32} = -1$				
	$u_{31} = 3$ and $u_{32} = -1 \implies k = 31$ (E1);				
(c)	Example $123 + (n-1)(-4) = 0$ (M1), $n = 31.75$ (no E yet) and $d < 0$ (OE) so $n = 31$ (E1)				
(c)	An OE for 2 nd M1 is $\sum_{n=1}^{31} u_n = \frac{31}{2} [a+3]$				

Q	Solution	Mark	Total	Comment		
9(a)	$6 = 3 \times 12^k$; $12^k = 2$	B1		$6 = 3 \times 12^k$ OE Condone <i>x</i> for <i>k</i> throughout.		
	$k\log 12 = \log 2$	M1		From $12^{k} = c$, correct application of 3^{rd} law of logs OE eg $k = \log_{12} c$		
(b)	(k =) 0.27894 = 0.279 (to 3sf) h = 0.5	A1 B1	3	Must see logs being used. Condone >3sf. h = 0.5 stated or used. (PI by <i>x</i> -values 0, 0.5, 1, 1.5 provided no contradiction)		
	$F(x) = 3 \times 12^{x}$ $I \approx \frac{h}{2} \{F(0) + F(1.5) + 2[F(0.5) + F(1)]\}$	M1		$h/2$ {F(0)+F(1.5)+2[F(0.5)+F(1)]} OE summing of areas of the 'trapezia'		
	$\frac{h}{2} \text{ with } \{\dots\} = 3 + 36\sqrt{12} + 2(3\sqrt{12} + 36)$	A1		OE Accept 2sf or better evidence for surds. Can be implied by later <u>correct</u>		
	= 3+124.7+2(10.39+36) = 127.7+2×46.39 (I \approx 0.25[220.492, 1, (= 55, 1, 1))			work provided >1 term or a single term which rounds to 55 or is 55		
	= 55 (to 2sf)	A1	4	CAO Must be 55 SC 4 strips used: max B0M1A0; 52 A1		
(c)	$\mathbf{f}(x) = 3 \times 12^{x-1} + p$	M2,1,0		M2 for $3 \times 12^{x-1} + p$; M1 if one sign error		
	$f(0) = 0 \implies 3 \times 12^{-1} + p = 0 \implies p = -0.25$	A1	3	p = -1/4 OE identified		
	Altn	<i>(</i> -)				
	$(0,)$ on $y=f(x)$ from translating $(-1, 3 \times 12^{-1})$	(M1) (M1)		PI by seeing 3×12^{-1} equated to p or $-p$		
	$-p = 3 \times 12^{-1} \Rightarrow p = -0.25$	(A1)	(3)	11		
(പ)	2	D1				
(0)	$2^{2-x} = 3 \times 12^{x}$ (2-x) log ₂ 2 = log ₂ (3×12 ^x)	M1		$2^{2-x} = 3 \times 12^{x}$ OE Elimination of y Attempting to takes logs of both sides of a correct eqn and applies a law of logs correctly to either side; condone missing base		
	$(2-x)\log_2 2 = \log_2 3 + \log_2 12^x$					
	$= \log_2 3 + x \log_2 12$ Using log laws correctly to reach a correct eqn where any log terms other than log3					
	$= \log_2 3 + x(\log_2 3 + \log_2 4)$ m1 equivalent and log are of the form log N where N = 2,4 or 8. condone missing base.					
	$2 - x = \log_2 3 + x \log_2 3 + 2x$	A1		$\log_2 2 = 1$ used to reach a correct eqn		
				involving no log terms other than $\log_2 3$		
	$2 - \log_2 3 = x \log_2 3 + 3x$	A 1	5			
	$x = \frac{2 - \log_2 3}{3 + \log_2 3} (q = 3)$	AI	5	$x = \frac{2 - \log_2 3}{3 + \log_2 3}$ obtained convincingly		
	Total		15			
(a)	$\frac{101AL}{(P1)! \log 6 - \log 2 + \log 12^{2}}$	[75	$\frac{1}{2}$		
(h)	$6 = 3 \times 12^{\circ}$ (B1); $\log 6 = \log 3 + \log 12^{\circ}$ (M not scored yet); $\log 6 = \log 3 + x \log 12$ (M1) For guidance sen trap 3.34 +11.59 +40.17 (b) MB of E(x) may P1M1A0A0					
(d)	NB $(2-x)\log_2 2=2-x\log_2 2=2-x$					
(d)	$4 = 3 \times 24^{x}$ (B1); $\log 4 = \log 3 + \log 24^{x}$ (M1); $\log 4 = \log 3 + x \log 24$; $\log 4 = \log 3 + x (\log 3 + \log 8)$ (m1)					
	$2 = \log_2 3 + x(\log_2 3 + 3) (A1); \ x = \frac{2 - \log_2 3}{3 + \log_2 3} (A1).$					
(d)	Example: $2^{2-x} = 3 \times 12^{x}$ (B1) $\log 2^{2-x} = \log 3 \times x \log 12 = x \log 36$, $2 - x \log 2 = x \log 36$ (M1m0)					

A-LEVEL Mathematics

Pure Core 2 – MPC2 Mark scheme

6360 June 2015

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
	(Area of sector =) $\frac{1}{2}r^2\theta$	M1		$\frac{1}{2}r^2\theta$ seen, or used, for the sector area
	$\frac{1}{2}(5^2)\theta = 15 \qquad \left(\theta = \frac{15}{12.5}\right)$	A1		A correct equation in θ or in $r\theta$ eg $2.5r\theta = 15$
	(Perimeter of sector =) $5 + 5 + 5\theta$	M1		$r + r + r\theta$ seen, or used, for the perimeter
	$= 10 + 5 \times \frac{6}{5} = 16$ (cm)	A1	4	16
	Total		4	

Q2	Solution	Mark	Total	Comment	
(a)	<u>AC</u> 20	M1		Correct use of sine rule with AC being the	
	$\sin 48^{\circ} \sin 72^{\circ}$			only unknown	
	$20 \sin 48^{\circ}$ 14.86	A1		Correct expression for AC. PI by	
	$AC = \frac{1}{\sin 72^{\circ}} (= \frac{1}{0.951})$			15.62(7774)	
	= 15.62(7774) = 15.6 (cm to 3 sf)	A1	3	AG Need some intermediate evaluation	
				between $\frac{20\sin 48^{\circ}}{\sin 72^{\circ}}$ and 15.6	
(b)	Angle $ACB = 60^{\circ}$	B1		Either $ACB = 60^{\circ}$ stated or used or seen on	
				diagram or $AB = AWRT 18.2$	
	$(AM^{2}=)10^{2} + (15.6)^{2} - 2 \times 10 \times 15.6 \times \cos C$	M1		RHS of relevant cosine rule used correctly	
	$=10^{2} + (15.6)^{2} - 156$	m1		$10^{2} + (15.6)^{2} - 156$ OE; accept evaluation	
				to, 187 to 188 incl., as evidence	
	AM = 13.7 (cm to 3 st)	Al	4	Condone more accurate answer	
	Total		7		
(b)	Allow use of 15.6 or better for AC				
(b)	Altn using perpendicular from A to BC				
	Either $ACB = 60^{\circ}$ stated or used or seen on diagram or $AB = AWRT 18.2$ (B1)				
	$(AM^{2}=) (15.6 \sin 60)^{2} + (10 - 15.6 \cos 60)^{2}$	$)^2$ OR (4)	$M^{2} =) (1$	$8.2\sin 48)^2 + (18.2\cos 48 - 10)^2$ (M1)	
	$=(13.5)^2+(2.2)^2$ (m1) Correct evaluations to	at least 1	dp accept	evaluation to, 187 to 188 incl., as evidence.	
	AM = 13.7 (cm to 3 sf) (A1) Condone more	e accurate	answer		

Q3	Solution	Mark	Total	Comment
(a)	$(3rd term=) ar^2 = 48(0.6)^2$	M1		ar^{3-1} stated or used
	= 17.28	A1	2	OE fraction eg 432/25. NMS 17.28 OE scores 2 marks unless FIW.
(b)	$\{S_{\infty} =\} \frac{a}{1-r} = \frac{48}{1-0.6}$	M1		$\frac{a}{1-r}$ used with $a = 48$ and $r = 0.6$ OE
	$\{S_{n} =\} 120$	A1	2	Correct exact value for S_{re} .
				NMS 120 scores 2 marks unless FIW.
(c)	$\sum_{n=4}^{\infty} u_n = S_{\infty} - \sum_{n=1}^{3} u_n$	M1		OE eg RHS = $S_{\infty} - (a + ar + ar^2)$
	$\sum_{n=1}^{3} u_n = (48 + 28.8 + \text{c's}(\mathbf{a}))$	A1F		OE eg $\sum_{n=1}^{3} u_n = \frac{48(1-0.6^3)}{1-0.6}$ (=94.08) PI
	$\sum_{n=4}^{\infty} u_n = 120 - 94.08 = 25.92$	A1	3	25.92 OE exact value
	Altn. $\sum_{n=4}^{\infty} u_n = \frac{u_4}{1-r}$ $u_4 = 17.28 \times 0.6 = 10.368$ $\sum_{n=4}^{\infty} u_n = \frac{10.368}{1-0.6} = 25.92$ Total	(M1) (A1F) (A1)	7	Ft on c's (a)×0.6. PI by $\sum_{n=4}^{\infty} u_n = \text{correct evaluation of } 1.5 \times \text{c's}(\textbf{a})$ 25.92 OE exact value

Q4	Solution	Mark	Total	Comment
(a)	$\frac{2}{2} = 2r^{-2}$	B 1		PI by its derivative as $-4x^{-3}$ or $4x^{-3}$
	$\frac{x^2}{dx^2} = -4x^{-3} - \frac{1}{4}$	M1 A1	3	Differentiating one term correctly. ACF
(b)(i)	$\frac{2}{x^2} - \frac{x}{4} = 0$	M1		
	$(x_M =)$ 2	A1	2	NMS 2/2 for correct answer.
(b)(ii)	(At <i>M</i>) $\frac{d^2 y}{dx^2} = -\frac{4}{8} - \frac{1}{4} < 0$, so max.	E1	1	Using c's x_M and c's $\frac{d^2 y}{dx^2}$ to show $\frac{d^2 y}{dx^2}$ is negative and stating conclusion is max.
(b)(iii)	$\int \left(\frac{2}{x^2} - \frac{x}{4}\right) dx = -2x^{-1} - \frac{x^2}{8}(+c)$	M1		Attempt to integrate $\frac{dy}{dx}$ with at least one of the two terms integrated correctly.
	$(y =) - 2x^{-1} - \frac{x^2}{8} (+ c)$	A1		$-2x^{-1} - \frac{x^2}{8}$ OE ; condone unsimplified
	When $x = 2$, $y = 2.5 \implies 2.5 = -1-0.5+c$	M1		Subst. $x = c$'s (b), $y = 2.5$ into $y = F(x)+c'$ in attempt to find constant of integration, where $F(x)$ follows attempted integration of expression for $\frac{dy}{dx}$
	$y = -2x^{-1} - \frac{x^2}{8} + 4$	A1	4	ACF but with signs and coeffs simplified
	Total		10	

Q5	Solution	Mark	Total	Comment
(a)	132 = 160 p + q	M1		Seen or used
	20 = 20p + q	M1		Seen or used
	112 = 140p	m1		Valid method to solve the correct two simultaneous eqns in p and q to at least the stage $112 = 140p$ OE or $28 = 7q$ OE PI by correct values for both p and q from two correct simultaneous equations
	$p = \frac{112}{140} \left(=\frac{4}{5}\right)$	A1		ACF
	<i>q</i> = 4	A1	5	<i>q</i> = 4
(b)	$160 = \frac{4}{5}u_1 + 4 \qquad u_1 = 195$	B1F	1	Ft on $u_1 = \frac{160 - c' \circ q}{c' \circ p}$, provided u_1 is exact and p and q are both positive.
	Total		6	
	Iotai	1	U	

Q6	Solution	Mark	Total	Comment
(a)	$\sin^{-1} 0.6 = 0.64(35) (=\beta)$	B 1		PI by one correct value for x to at least 2dp
	$r + 0.7$ θ $r + 0.7$ $- \theta$ $(-2.4(08))$	M1		or 2st $r + 0.7$ $r = 0.00$ $r + 0.7$
	$x + 0.7 = \beta$, $x + 0.7 = \pi - \beta$ (-2.4(98))	IVI I		$x + 0.7 = \beta$ and $x + 0.7 = \pi - \beta$ where β
				is the c's value for $\sin^{-1} 0.6$
	x = -0.056, 1.8 (to 2 sf)	A1	3	Must be correct 2sf values ie -0.056, 1.8 Ignore any values outside given interval. SC NMS Condone>2sf and mark as B1 B1 max. {-0.056(498); 1.7(9809)}
(b)(i)	$5\cos^2\theta - \cos\theta - 1 - \cos^2\theta$	M1		Replacing $\sin^2 \theta$ by $1 - \cos^2 \theta$
(~)(-)	$5\cos^2\theta \cos^2\theta = 1-\cos^2\theta$	A1		Keplacing sin 0 by 1–cos 0
	$(2\cos\theta - 1)(3\cos\theta + 1) = 0$	m1		$(2\cos\theta + 1)(3\cos\theta + 1)$ PI by the two
				'correct' roots with correct/incorrect signs
		A1		
	(Possible values of $\cos \theta = \frac{1}{2}, -\frac{1}{3}$		4	The two correct values of $\cos \theta$.
(b)(ii)	When $\cos\theta = -\frac{1}{3}$, $\sin^2\theta = \frac{8}{9}$	B1		
	$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{(\pm) \sqrt{\frac{8}{9}}}{-\frac{1}{3}}$	M1		$\tan \theta = \frac{\sin \theta}{\cos \theta} \text{ used}; \text{ could be used with}$ either of c's values of $\cos \theta$ from (b)(i) and a corresponding value of $\sin \theta$
	So a (+'ve) value for $\tan \theta$ is			
	$-\sqrt{\frac{8}{9}} \div \left(-\frac{1}{3}\right) = \sqrt{8} = 2\sqrt{2}$	A1	3	CSO A.G. Be convinced.
	Total		10	
(a)	Eg NMS $x = -0.06$, 1.80 scores B0B1			
(b)(ii) Alt	$\sec\theta = -3$, $\sec^2\theta = 9$ (B1); $\tan^2\theta = \sec^2\theta$	-1 = 9 - 1	l (M1); (-	+'ve) value of $\tan \theta$ is $\sqrt{8} = 2\sqrt{2}$ (A1CSO)

Q7	Solution	Mark	Total	Comment
(a)(i)		E2,1,0	2	
	I ranslation			E2: 'translat' and $\begin{vmatrix} 0 \\ 1 \end{vmatrix}$
				award Elfor 'translat in y-dir' OE.
				More than one transformation scores $0/2$
/ \/m				
(a)(II)	Stretch (I) in x-direction (II) scale factor Ω (III)	M1	2	Need (I) and either (II) or (III)
	scale factor 9 (III)	AI	2	More than one transformation scores $0/2$
(b)(i)	$\int_{1}^{9} (1 + \sqrt{r}) dr = 9 + 18 = 27$	B1	1	27
	$\int_{0}^{0} (1 + \sqrt{x}) dx = y + 18 - 27$			
(b)(ii)	h = 2.25	R1		h = 2.25 OF stated or used
	n = 2.25	DI		(PI by x-values 0, 2.25, 4.5, 6.75, 9)
				provided no contradiction)
	$x \rightarrow \frac{x}{10}$			
	$f(x) = 4^{9}$	М1		h/2 (f(0)+f(0)+2[f(2,25)+f(4,5)+f(6,75)])
	$I \approx \frac{n}{2} \{f(0)+f(9)+2[f(2.25)+f(4.5)+f(6.75)]\}$	1911		OE summing of areas of the 'trapezia'.
	(1 1 3)	A1		OF Accept 2sf or better evidence for
	$\frac{h}{2}$ with $\{\ldots\}=1+4+2$ $4^{\overline{4}}+4^{\overline{2}}+4^{\overline{4}}$			surds. Can be implied by later <u>correct</u>
				work provided >1 term or a single term
	$= 5 + 2\left(\sqrt{2} + 2 + 2\sqrt{2}\right) = 9 + 6\sqrt{2}$			which rounds to 19.7
	$(I \approx \frac{2.25}{2} [9 + 8.48] = 1.125 \times 17.485)$			
	(= 19.67) = 19.7 (to 1 dp)	A1	4	CAO Must be 19.7
	(1910 (1910 (1917 (1			SC 5strips used: Max B0M1A0, 19.6 A1
(b)(iii)	Area of shaded region \sim			
	Area of shaded region \sim			
	$\int_{0}^{3} (1 + \sqrt{x}) dx - \int_{0}^{3} 4^{\overline{9}} dx$	M1		
	=27-19.7=7.3	A1F		Ft on $[c's (b)(i) - c's (b)(ii)]$ provided this
				gives a value>0.
	Since trapezia cover larger area than area			
	under lower curve, 19./ is overestimate so			Need both the final answer 'underestimate' plus mention of the fact
	under upper curve will lead to an			that the trapezium rule gives overestimate
	underestimate of the true area of shaded	E1	3	as trapezia cover larger area-cand could
	region.			show this on a diagram.
				(E1 is dep on M1 but not on the A1F)
	Total		12	
(a)(i)	Example: 'translating 1 in positive y' OE (I	E 2)		1
(b)(ii)	For guidance, separate trap. $2.71(5) + 3.84$	4(0)+5.4.	3(1)+7.6	8(1). NB 3/4 possible if values to 2sf
(II)(II)	$\frac{1}{1}$ Iron an altempted into	egration,	<u>шах</u> БНУ	HAVAV

Q8	Solution	Mark	Total	Comment
	Gradient of the line $3y - 2x = 1$ is $\frac{2}{3}$	B1		(Gradient) $\frac{2}{3}$ seen or used. Condone 0.66,
				0.67 or better for $\frac{2}{3}$.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} x^{-0.5}$	B1		Correct differentiation of $x^{\frac{1}{2}}$
	At A, $\frac{1}{2}x^{-0.5} = \frac{2}{3}$	M1		c's $\frac{dy}{dx}$ expression = c's numerical
				gradient of given line.
	$A\left(\frac{9}{16},\frac{3}{4}\right)$	A1		Correct exact coordinates of A
	Eqn of tang at A: $y - \frac{3}{4} = \frac{2}{3} \left(x - \frac{9}{16} \right)$	A1	5	ACF eg $y = \frac{2}{3}x + \frac{3}{8}$ or eg $3y - 2x = \frac{9}{8}$
	Tetel			must be exact
	lotai		5	
Examples	Cand. writes $0.5x^{-0.5} = k$, and stops, when	$e k = -\frac{2}{3}$	or 2 or -	-2. Mark these types as (B0, B1, M1A0A0)

Q9	Solution	Mark	Total	Comment
(a)	$3x\log 2 = \log 5$	M1		OE eg $3x = \log_2 5$ or eg $x \log 8 = \log 5$
	x = 0.773(976) = 0.774 (to 3sf)	A1	2	Condone > 3sf. If use of logarithms not explicitly seen then score $0/2$
(b)	$\log_a \frac{k}{2} = \frac{2}{3}$	M1		Either $\log k - \log 2 = \log \frac{k}{2}$ or $\frac{2}{3} = \log a^{\frac{2}{3}}$ seen at any stage
	$\frac{k}{2} = a^{\frac{2}{3}}$	A1		OE eqn with logs eliminated with no incorrect work
	$a^{\frac{2}{3}} = \frac{k}{2} \implies a = \left(\frac{k}{2}\right)^{\frac{3}{2}}$	m1		$a^{\frac{m}{n}} = C \Longrightarrow a = C^{\frac{n}{m}}$
		A1	4	$a = \left(\frac{k}{2}\right)^{\frac{3}{2}}$ OE exact form with no obvious incorrect working
(c)(i)	$(1+2x)^3 = 1+3(2x)+3(2x)^2+(2x)^3$ $= 1+6x+12x^2+8x^3$	B3,2,1	3	 B3: expansion correct and simplified B2: 3 of the 4 terms correct and simplified B2; 4 terms correct but not all simplified B1 2 of the 4 terms correct and simplified (ignore the ordering of the terms)
(c)(ii)	$[(1+2n)^3 8n] = 1 2n+12n^2 + 8n^3$	B1F		Ft at most two incorrect coefficients in (c)(i)
	log(1+2n) - on = 1 - 2n + 12n + on $log(1+2n) + log 4(1+n^2) = log 4(1+n^2)(1+2n)$	M1		Log law 1 applied correctly to RHS of given eqn., ignore base. Those who rearrange the terms first before applying log law 2 correctly must also attempt to deal with the resulting fraction in a correct manner
	Given equation becomes			
	$1 - 2n + 12n^2 + 8n^3 = 8n^3 + 4n^2 + 8n + 4$			
	$8n^2 - 10n - 3$ (=0)	A1		Correct three term quadratic
	(4n+1)(2n-3) (=0)	Al		PI by correct two roots from a correct quadratic equation
	$n = -\frac{1}{4}, \ n = \frac{3}{2}$	A1	5	Need both as the final two values of <i>n</i> with no extras
	Total		14	
(b)	Example: $\log k - \log 2 = \frac{\log k}{\log 2} = \frac{2}{3}, \frac{\log k}{\log 2}$	$\frac{k}{2} = \log a$	² / ₃ (M1),	$\frac{k}{2} = a^{\frac{2}{3}}$ (A0), $a = \left(\frac{k}{2}\right)^{\frac{3}{2}}$ (m1) (A0)